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Abstract

To say algorithms are a major component of computer science is a
gross understatement. Even as computers become more and more power-
ful, data sets expand faster still, dictating the need for the most efficient
processing possible. The goal of my project is to illustrate the major prop-
erties of several algorithms for comparison data sets of varying size and
complexity. Because of their relative simplicity and ease of illustration, I
will focus on rudimentary sorting, searching and selecting.

1 Basics of Algorithmic Analysis

1.1 Algorithmic Notation

Figure 1: A graph where f(x) is O(g(x))

Let’s examine the running time of a simple algorithm in its worst and best
case. "Worst case” means the data set that will take the longest to be sorted
with this particular algorithm. ”Best case” means the opposite. The notation
generally accepted for basic algorithmic analysis is called Big-O notation.

A mathematical definition of Big-O is f(z) is O(g(z)) if there exists ¢ ¢ 0
and k such that f(x) is less than cg(x) whenever x ”;” k. Thus, the Big-O
running time represents an upper bound in computational complexity based on
the number of elements being processed. In order to prove these upper bounds,



we will use a technique called unrolling a recurrence relation. This is essentially
reversing an inductive proof, where we take a general form of running time and
trace to a base case. T(n) is a function that takes the size of the data and
returns the running time (in arbitrary computational units).

1.2 Sample Analysis - Bubble Sort
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Figure 2: An example of unrolling a recurrence (not Bubble Sort)

Bubble Sort is a basic algorithm that runs linearly through the data set and
swaps adjacent elements that are out of order with respect to each other. I
claim that Bubble Sort’s running time is:

T(n) = T(n-1) + n

T(0) =1

This makes sense because for each pass through the array, the largest element
will bubble up to the highest position in the set. This guarantees its position is
correct, and thus does not require additional swapping, which essentially reduces
the size of the remaining data set by one. The base case is that a set with no
data is defined to be sorted. If we substitute T for itself in this equation, we
get:

T(n) = T(n-1) + n =T(n-2) + n + n = T(n-3) + 3n

Until we reach the base case of:

T(n) = T(0) + n*n =1 + n?

We say that Bubble Sort is O(n?). That is, the running time of the algorithm
is proportional to the number of elements squared. However, I also claim that in
the best case, when the array is already sorted, bubble sort behaves differently. If
you implement bubble sort to be intelligent it can detect that no swaps were done
in the immediate pass, which means that the array is sorted. The recurrence
becomes:

Tn)=1+n

And we say that bubble sort in best case is O(n). That is, the running time
is only proportional to the number of elements - much better than the previous
case. This is the lower bound of Bubble Sort.



binary search(list, 9, 33);
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Figure 3: An illustration of binary search on a sorted array

1.3 Sample Analysis - Binary Search

Binary Search is a basic algorithm that finds the element with a certain value in
a sorted data structure. It accomplishes this efficiently by repeatedly checking
the middle element of the set, then dividing the data set into a smaller set of
elements that are greater than or less than depending on the desired values
relation to the middle element. I claim that Binary Search’s running time is:

T(n)=T(n /2)+1

T(1) =1

This makes sense because for each iteration, you inspect the middle element
(the constant factor), and then divide the size of the data in half. The base case
is running the algorithm on a single element - either it is the element (in the
set), or it is not (not in the set). If we substitute T for itself in this equation,
we get:

Tn)=T(n/4)+2=Tn/8) +3

Until we reach the base case of:

T(n) = T(0) + log(n) = 1 + log(n)j/pi And we say that binary search is
O(log(n)), so proportional to the log of the number of elements. This is clearly
a better case than a linear search O(n) time, which grows much faster.

2 Factors of a Basic Comparison Algorithm

2.1 Sections

Use section and subsection commands to organize your document. IXTEX han-
dles all the formatting and numbering automatically. Use ref and label com-
mands for cross-references.

2.2 Computational Complexity

The number of element comparisons made by the algorithm, generally given as
a function of the size of the input list. There is a generally accepted lower bound
of average performance on the order of O(nlogn) comparisons for comparison
based sorting algorithms.

2.3 Memory Usage

In particular, there are two major categories of algorithms: in place and out of
place. Out of place algorithms use additional memory than the original data.
For many situations, this extra memory use is unacceptable either because of
restricted space and resources, or the additional processing time required to
access data between sections of memory. In addition, in place algorithms can be



optimized to be as efficient in most cases. All the sorting algorithms illustrated
in my project will be in place algorithms.

2.4 Stability and Adaptability

Stable sorting algorithms maintain the existing relative order of the elements of
the data structure. If a sort breaks the existing relations between elements, it
is acting counter productively. In some structures can break the ability of the
data set to be processed while it is being modified, a crucial property in systems
such as databases. An algorithm is said to be adaptive if the algorithm takes
advantage of whether or not the list is presorted, nearly sorted or completely
random. This is an important metric since we clearly do not want to process
the entire list repeatedly if it is already sorted.

3 Applications of Graph Theory

3.1 Graph definitions

Figure 4: An illustration of a simple connected graph

A graph is an ordered pair of vertices and edges connecting those vertices.
The edges can be either undirected or directed, indicating a binary relationship
between two vertices. A cycle is a closed walk that begins and ends at the same
vertex. A graph is acyclic if it contains no cycle. Because the algorithms we are
examining are comparison sorts, there are only two possible relations between
elements: less than or equal to, and greater than. Two vertices are connected
when there is a path between them, and graph is called connected if there exists
a path between any two given nodes, or identically if the graph consists of only
one component

3.2 Array

An array is a section of contiguous data in memory, indexed from a starting
point. This means that an unsorted array is equivalent to a indexed sequence
of unconnected graphs. Each element can be accessed individually in constant
time, but there is no inherent connection between elements. Searching for a
particular value requires a check on each element which in its worst case will
take O(n) time as the entire sequence of vertices is traversed.
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Figure 5: A illustration of a sorted array being treated as a binary search tree

When an array is sorted, it is analogous to transforming this graph into a
directed, acyclic graph where each vertices has a max degree of 3, (in degree of
1 and out degree of 2) also sometimes called a binary search tree in computer
science terminology. This enables easier searching, since the kth element can be
found in constant time O(1) as an offset from the base, and the element with
value m can be found in O(log(n)) using a divide and conquer approach, binary
search.

3.3 Linked Lists

List Handle

Figure 6: A illustration of a singly linked list data structure. A doubly linked
list, as you may imagine, has an additional arrow pointing in the other direction

A doubly linked list is a data structure wherein the data is stored in a series
of elements, containing a pointer to the next element in addition to the data
itself. This likens an unsorted linked list to an undirected, connected graph with
max degree of 2, where the user only has access to the first and last elements
of the structure, commonly called the head and tail. Searching for a particular
value requires O(n) time for the same reason as array traversal.

When a linked list is sorted, it is analogous to transforming this graph to
a directed, connected graph still with max degree 2, with the same user access
of the head and tail. This actually does not provide any feasible benefits in
searching by value or index, since you must still traverse every element in order
to ensure the element is found or not.
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