SimpleOpt: A Simplified Topology Optimization
Algorithm

BY MICHAEL MILLER

December 11, 2013

Abstract

Current methods of Topology Optimization use series of differential equations to model stress

and strain on millions of infinitesimal elements of a single solid. This process is repeated
hundreds of times, following one of many optimization algorithms. Clusters of computers
working in parallel can take hours to optimize a small part.

This project sought is to create a simplified version of the Topology Optimization process.
A Java RTICA was created which uses only basic concepts of physics and mechanics. The
RTICA'’s toy physics will approximate the results of programs that utilize more sophisticated
models of physics.

1 Background

Topology Optimization is a design process in which three-dimensional, load bearing parts are
created with minimal material at maximum strength. In theory, the process is relatively simple.

First, the engineer inputs a current part, and the forces that this part will likely undergo.
The program then analyzes the stress and strain on each minute element of the part. Areas with
very low stress are removed, and areas with high stress are reinforced. The program then iterates,
continuing to remove and add material until certain criteria are met. For example, the program
might stop once all elements have less than a certain amount of stress and iterating again would
push them over this limit.

The results of this process are usually asymmetric, organic-looking parts. In the past, these
parts had little use since they are difficult to manufacture. However, in an era of 3D printing,
companies are turning more and more readily to Topology Optimization.

Figure 1. An optimized part

2 SECTION 2

2 Program Overview

2.1 Finite Element Analysis

The FEA in SimpleOpt calculates the stress at each element in a predefined, two dimensional grid.
The analysis starts with an applied force and follows its path downward until it reaches the ground.
Each element that receives force distributes it to the three elements beneath it. Often, an element
is positioned in a way that its force can never reach ground. In this case, the element is marked
as unsupported and the analysis does not apply force to it.

The location of forces and the location of the ground can be modified by the user. In addition,
elements where material is undesirable can be permanently excluded from the analysis.

The actual process of analysis in SimpleOpt is complex and highly recursive. The program
analyzes each applied force individually. In order to eliminate redundant calculation, the program
works recursively, following the boundary of the propagating force. When the algorithm analyzes
an element, it first finds all of that element’s children - the elements below it that will receive force.

The algorithm distributes the appropriate amount of force to each child, and then adds it to a
list. This process is repeated for each element in the boundary. However, if an element is a child
of two different elements in the boundary, it is added to the list only once.

The list will now contain the next boundary, and the process is repeated. By working
with boundaries instead of individual elements, the analysis must only consider each part of the
boundary once.

In addition, because this system only considers boundaries, it completely ignores row and
column numbers. The program can be quickly adapted to propagate forces in any number of
directions, not just down. This is important if SimpleOpt is ever to be expanded, as discussed below.

Figure 2. A sample of SimpleOpt’s finite element analysis

2.2 Optimization Algorithm

The program uses a Level Set Algorithm [1] (Figure 3) to optimize its material. In this sense

ProGgraM OVERVIEW 3

SimpleOpt only regards the stress on the edge of material. The program calculates how many
elements are currently in use and compares this to the predefined goal. If there is more material
than required, the program finds the element on the boundary with the least amount of stress and
removes it. If there is less, the algorithm reinforces the boundary element under the most stress
by adding additional material around it.

D - . S e
5(’\'; P 59 BV U
(SO0 s J O oA 3 / / \‘"w‘ .. 6
JOOOOOT OO p) N
ﬁ:. y — r/—\ 'r i1 r /.-{ N,
L Q0NN 0N - N
D(:)‘/ & \J Q DE:E)C f’/ . "\\h\
O@Ouoooc - S 5
o T 2 / 0
o(‘\ SO0, N LN
£000600000) LS N
RhRLhRLRLRT N
O0OO0OC .;"') e O Cn OO0 _ . _
0000000000, 4 NS 1«, 4
0000000000 AR RN R
elelejejefojelelole) /2 72 o

Figure 3. Optimization by a Level Set Algorithm [1]

2.3 Graphical User Interface

The GUI provides the user with a number of options to improve the usability of SimpleOpt. The
position and number of forces and ground can be modified and moved, and material can be added
to, or excluded from analysis. The target amount of material can be adjusted. In addition to
performing at its maximum speed, the analysis can be slowed to allow the optimization process to
be visualized.

A significant portion of the code used in the graphical portion of this program comes from
Zen Graphics [2]. The options available to the user are based partially off of TopOpt, an iPhone
application created by Aage et al, [3].

Obj.: 223.76

Figure 4. TopOpt iPhone screenshot [3]

4 SECTION 3

3 Conclusion

3.1 Reults and Discussion

SimpleOpt can undoubtable perform faster than any optimization software the author has
encountered. Because it is not computationally demanding, the RTICA can analyze large numbers
of elements, forces, and ground locations with ease. These analyses can be carried out speedily
even on weak, personal machines.

However, it must be noted that this program simplifies physics to an extreme degree. By
simple inspection it can be seen that this program’s optimizations are not at all optimal in the
real world (Figure 5). In addition the program lacks a number useful constraints other Topology
Optimization programs applied. For example, in SimpleOpt the material is not constrained to be
connect, resulting in the creation of parts that are completely separate from each other. For these
reasons it is difficult to compare SimpleOpt to other programs.

Topology Optimization
By Michael Miller

(f) - toggle force

(m) - toggle material
(g) - toggle ground
(p) - pause/resume
(1), (2), (3) - presets

(a) - begin analysis
(r) - reset
(esc) - exit

Figure 5. An optimized part that is clearly not optimal under real physics

3.2 Further Study

If additional complexity were added to SimpleOpt, the program could more closely represent
physics. However, this additional code could make the program more computationally expensive. It
is not known whether adding this complexity would SimpleOpt to run as slowly as other programs.

In order to answer this question, either the algorithms and code behind other optimizers must
be further studied and better understood, or SimpleOpt must be expanded and tested.

Should SimpleOpt be improved, it would probably be in the following manner. SimpleOpt’s
units of stress can be best compared to the y component of forces in physics, so the first step to
expand SimpleOpt would be to add an x component of stress. Another addition is the addition of
torque, which would further refine SimpleOpt’s accuracy towards physics.

BiBLIOGRAPHY 5

Bibliography

[1] Bendsoe, M. P. and Sigmund, O. (2003) Topology Optimization: Theory, Methods, and Applications. New
York: Springer Publishing.

[2] Angrave, L. (2010). Zen Graphics |[Java Class|. Publisher: Author. Random House, N.Y.

[3] Aage, Niels, Morten, N. J., Casper, A. S. and Signmund, O. (2013) Interactive Topology Optimization on
Hand-held Devices. Structural and Multidisciplinary Optimization, 47, 1-6. http://dx.doi.org/10.1007/s00158-
012-0827-z

[4] Signmund, O. (2001). A 99 line topology optimization code written in Matlab Structural and Multidisciplinary
Optimization, 21, 120-127. http://link.springer.com/article/10.1007/s001580050176#page-1

