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Abstract

The goal of this project is to create a functioning game that can graph-
ically display elastic collisions. The design is not to discover the unknown,
but to demonstrate the known. The program takes a mostly dull concept
and makes it interesting through the use of a video game facade.

1 The Game

The idea of the game is to put the user in control of a rubber ball. The user will
earn coins as he or she progresses through a number of levels. The coins can
then be used to increase the mass, speed, acceleration, etc. of his or her ball.
The objective of each level is to knock a number of artificially intelligent rubber
balls off a platform. The collisions will be realistic in that they will exhibit a
conservation of momentum.

2 The Math

2.1 Collision Detection

As the program runs, it needs to determine whether or not two objects are in
contact. It does this by testing the location of each ball against the other balls,
and seeing if they are close enough to be touching. Mathematically, if

r1 + r2 ≤
√

(C1x − C2x)2 + (C1y − C2y)2 (1)

where
r1 is the radius of the first ball
r2 is the radius of the second ball
C1x is the x-coordinate of the center of the first ball
C2y is the y-coordinate of the center of the second ball, ect.,

then a calculation needs to be made (see Inelastic Collisions below). For the
case where r1+r2 is less than the distance between the centers, an accomodation
had to be made in order to prevent bugs such as objects getting stuck together,
calculations being made wrong, etc. This was handled by taking the center of
each ball and moving it until the equality of equation 1 becomes satisfied. They
move in the direction that yields the shortest path.

C1x = C1x +
(C1x − C2x)

|C1x − C2x|
(2)
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C1y = C1y +
(C1y − C2y)

|C1y − C2y|
(3)

Equations 2 and 3 work by either incrementing or decrementing the the coordi-
nates of the ball a small amount until the edge of the ball is tangent to the edge
of the ball it is colliding with. If C1x is greater than C2x, then C1 will move to
the right. If C1y is less than C2y, then C1 will move upward, etc. (coordinate
system is based off an origin in the top left corner of the environment).

2.2 Elastic Collisions

Figure 1: An example of a 2-dimensional collision. M1 and M2 travel from their
top left and bottom right positions along the v1 and v2 vectors, respectively,
before colliding at the location in the center.

A collision will occur whenever equation 1 is satisfied. Our goal is to de-
termine the final velocities of each ball. In order to do this, we simplify the
problem by rotating the axis so the collision looks like figure 2.

Figure 2: 2-dimensional collision after rotation of axis
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In order to calculate the velocities relative to the rotated axis, we can use
trigonometry. v1, v2, θ1, θ2, and φ are shown in figure 1. The subscript r stands
for rotated.

v1xr = v1(cos(θ1 − φ)) (4)

v1yr = v1(sin(θ1 − φ)) (5)

v2xr = v2(cos(θ2 − φ)) (6)

v2yr = v2(sin(θ2 − φ)) (7)

The values of θ1, θ2, and φ can be determined using the coordinates of the
center of each ball (C), the x- and y-velocities(pre-rotation) of each ball, and
trigonometry.

φ = arctan(
(C1y − C2y)

(C1x − C2x)
) (8)

θ1 = arctan(
v1y
v1x

) (9)

θ2 = arctan(
v2y
v2x

) (10)

The axis are now rotated in such a way that the collision is only in the xr
direction. Since the collision is now 1-dimensional, we can use the conservation
of momentum equation for a perfectly elastic collision:

v1f =
v1(M1 −M2) + 2M2v2

M1 +M2
(11)

If you are unfamiliar with this equation, consider the following examples to
gain some intuition: if M1 >> M2, v1 will be unaffected; if M1 << M2, v1 will
become −v1. By combining equations 4, 6 and 11, we get

v1xrf =
v1(cos(θ1 − φ))(M1 −M2) + 2M2v2(cos(θ2 − φ))

M1 +M2
(12)

likewise,

v2xrf =
v2(cos(θ2 − φ))(M2 −M1) + 2M1v1(cos(θ1 − φ))

M1 +M2
(13)

Now we must calculate the x- and y- velocities relative to the natural(non-
rotated) axis. We do this using the contact angle, φ. We add π

2 when using the
y-velocity because we are moving along the rotated y-axis and our φ is relative
to the rotated x-axis.

v1xf = v1xrfcos(φ) + v1yrcos(φ+
π

2
) (14)

v1yf = v1xrfsin(φ) + v1yrsin(φ+
π

2
) (15)

v2xf = v2xrfcos(φ) + v2yrcos(φ+
π

2
) (16)

v2yf = v2xrfsin(φ) + v2yrsin(φ+
π

2
) (17)
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We can now form our master equations. By plugging equations 5, 7, 12 and
13 into equations 14-17, we now have equations that can directly compute the
final velocities.

v1xf =
v1(cos(θ1 − φ))(M1 −M2) + 2M2v2(cos(θ2 − φ))

M1 +M2
cos(φ)+v1(sin(θ1−φ))cos(φ+

π

2
)

(18)

v1yf =
v1(cos(θ1 − φ))(M1 −M2) + 2M2v2(cos(θ2 − φ))

M1 +M2
sin(φ)+v1(sin(θ1−φ))sin(φ+

π

2
)

(19)

v2xf =
v2(cos(θ2 − φ))(M2 −M1) + 2M1v1(cos(θ1 − φ))

M1 +M2
cos(φ)+v2(sin(θ2−φ))cos(φ+

π

2
)

(20)

v2yf =
v2(cos(θ2 − φ))(M2 −M1) + 2M1v1(cos(θ1 − φ))

M1 +M2
sin(φ)+v2(sin(θ2−φ))sin(φ+

π

2
)

(21)
These equations provide us with a ”simple” way to calculate the final veloc-

ities of two colliding balls that very accurately mirrors reality.
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