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Abstract

The double pendulum is a dynamic system that exhibits sensitive
dependence upon initial conditions. This project explores the motion
of a simple double pendulum in two dimensions by altering Bruce
Sherwoods VPython code to accurately represent the simple double
pendulum at high energies and graphing the phase portraits of the
system. It includes an interface via which the user can alter the two
masses and the initial angles of the system. This documentation ex-
plains the mathematics relevant to the project.

1 Lagrangian and Hamiltonian Mechanics

1.1 Hamilton’s Principle: The Foundation of Lagrangian
Mechanics

Before discussing the double pendulum, we must first develop new ways to
study mechanics, namely, Lagrangian and Hamiltonian mechanics. As New-
tonian mechanics revolve about the famous equation F = ma, Lagrangian
mechanics utilize Hamilton’s Principle:

The actual path which a particle follows between two points 1
and 2 in a given time interval, t1 to t2, is such that the action
integral

S =

∫ t2

t1

L dt (1)

is stationary when taken along the actual path and the Lagrangian
is here given by L = T-U (Taylor298).
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1.2 Calculus of Variations

In order to determine the path that extremizes the action, we require calculus
of variations. Consider the integral

A =

∫ t2

t1

L(qi(t), q̇i(t), t) dt (2)

Let qi(t), q̇i(t) be the path that extremizes the integral. We will vary this
optimal path ~qi(t) by adding some δ~qi(t) where δ~qi(t1) = δ~qi(t2) = 0 because
the endpoints are fixed. We seek A stationary, δA = 0. By the chain rule,
we have

0 =

∫ t2

t1

(
∂L
∂qi

δqi +
∂L
∂q̇i

δq̇i

)
dt (3)

Using integration by parts,∫ t2

t1

(
∂L
∂q̇i

)(
d

dt
δqi

)
dt = δqi

∂L
∂q̇i

∣∣∣∣t2
t1

−
∫ t2

t1

δqi

(
d

dt

(
∂L
∂q̇i

))
dt (4)

The first term on the right-hand side goes to zero because δqi is zero at the
endpoints. It follows that δA = 0 if and only if∫ t2

t1

(
δqi

∂L
∂qi
− δqi

(
d

dt

(
∂L
∂q̇i

)))
dt = 0 (5)

or equivalently
∂L
∂qi

=
d

dt

(
∂L
∂q̇i

)
(6)

This is the Euler-Lagrange Equation, the central tenant of calculus of varia-
tions and the primary tool for utilizing Hamilton’s Principle. This method-
ology is known as Lagrangian Mechanics (Makins).

1.3 Transforming to Hamiltonian Mechanics

Because the double pendulum is somewhat easier to analyze with Hamilto-
nian Mechanics, we will take a moment to shift to this technique. Unlike
Lagrangian Mechanics, which utilizes the generalized coordinates qi and q̇i,
Hamiltonian Mechanics uses the generalized coordinates qi and pi with the
latter, the generalized momentum is given by

pi =
∂L
∂q̇i

(7)
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(Taylor522)
A Legendre Transformation converts Lagrangian Mechanics to Hamilto-

nian Mechanics.

H =
n∑

i=1

q̇ipi − L (8)

where H is the Hamiltonian of the system. This transformation creates two
new equations from each Lagrangian equation:

ṗi = −∂H
∂qi

(9)

q̇i =
∂H
∂pi

(10)

(Math24)

2 Analyzing the Simple Double Pendulum

2.1 Results of Hamiltonian Analysis

For the simple double pendulum with two massless rods of equivalent length,
we have q1 = φ1, the angle that the upper rod makes with respect to the
vertical, and q2 = φ2, the angle that the lower rod makes with respect to the
vertical.

Hamiltonian analysis yields four first-order differential equations:

φ̇1 = f1(φ1, φ2, p1, p2) =
p1 − p2 cos(φ1 − φ2)

m1l2(1 + µ sin2(φ1 − φ2))
(11)

φ̇2 = f2(φ1, φ2, p1, p2) =
p2(1 + µ)− p1µ cos(φ1 − φ2)

m1l2(1 + µ sin2(φ1 − φ2))
(12)

ṗ1 = f3(φ1, φ2, p1, p2) = −m1(1 + µ)gl sin(φ1)− A+B (13)

ṗ2 = f4(φ1, φ2, p1, p2) = −m1µgl sin(φ2) + A−B (14)

where

A =
p1p2 sin(φ1 − φ2)

m1l2(1 + µ sin(φ1 − φ2))
(15)

B =
(p21µ− 2p1p2µ cos(φ1 − φ2) + p22(1 + µ))(sin(2(φ1 − φ2)))

2m1l2(1 + µ sin2(φ1 − φ2))2
(16)

µ =
m2

m1

(17)
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2.2 Numerical Analysis of the Double Pendulum: The
Runge-Kutta Method

This system can be approximated numerically using the Runge-Kutta Method.
To perform 4th order Runge-Kutta analysis upon this system, we first write
it in vector form:

X ′ = f(X) (18)

where

X =


φ1

φ2

p1
p2


and

f(X) =


f1(φ1, φ2, p1, p2)
f2(φ1, φ2, p1, p2)
f3(φ1, φ2, p1, p2)
f4(φ1, φ2, p1, p2)


The 4th order Runge-Kutta method uses a small time step τ and at time t
for which X = Xn defines

Y1 = τf(Xn) (19)

Y2 = τf(Xn +
1

2
Y1) (20)

Y3 = τf(Xn +
1

2
Y2) (21)

Y4 = τf(Xn + Y3) (22)

such that Xn+1, which is the value of X at time t+τ , is given by

Xn+1 = Xn +
1

6
(Y1 + 2Y2 + 2Y3 + Y4) (23)

(Math24)
The extra weight given to the midpoints stems from Simpson’s rule:∫ b

a

f(x)dx ≈ b− a
6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
(24)

(WolframMathworld)
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