The Hopf Fibration and the Clifford Torus

The Hopf Fibration

The Hopf Fibration, also known as the Hopf Map, is a map of the 3 -Sphere, a sphere in the $4^{\text {th }}$ dimension, to the $3^{\text {rd }}$ dimension.

It describes the 3-Sphere by using circles inside of an ordinary sphere, the 2-Sphere.

3 Sphere and 2 Sphere

If the 2 Sphere is a 3 dimensional shape, why is it not called the 3 sphere?

The 2 Sphere is the $2^{\text {nd }}$ dimension all wrapped up into a ball, giving it the $3^{\text {rd }}$ dimension, but it keeps its name. The 3 Sphere is the $3^{\text {rd }}$ dimension pushed into a sphere, thereby giving it a $4^{\text {th }}$.

Dimensions

$$
S^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

The equation for a 2-sphere is as shown above, with the xs being the distance from the center in the x, y, and z plane.

Dimensions

$$
S^{3}=\left\{\left(X_{1}, X_{2}, X_{3}, X_{4}\right): X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2}=1\right\}
$$

So the equation for a 3-Sphere, having only 1 more dimension, must be as shown above.

Dimensions

The Hopf Fibration takes $\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}\right)$ to $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ with the following equations.

$$
\begin{aligned}
& x_{1}=2\left(X_{1} X_{2}+X_{3} X_{4}\right) \\
& x_{2}=2\left(X_{1} X_{4}-X_{2} X_{3}\right) \\
& x_{3}=\left(X_{1}^{2}+X_{3}^{2}\right)-\left(X_{2}^{2}+X_{4}^{2}\right)
\end{aligned}
$$

The Hopf Fibration

The Hopf Map is a fibration.
A fibration is a "map between topological spaces" that satisfies a certain "homotopy lifting property."

As we mentioned earlier, the Hopf Fibration is the map of the $3-S p h e r e$ to the $3{ }^{\text {rd }}$ dimension. Its fibers are great circles, so if we remove the poles, we now have a sphere composed of fibers.

The Hopf Fibration

Each fiber is linked with each other fiber exactly once.

http://math.scu.edu/~ffarris/

The Clifford Torus

When stereographically projected from the fourth dimension to the $3^{\text {rd }}$ dimension, the Hopf Fibration produces what is called a "Clifford Torus."

Clifford Torus

Equations

Torus: $S^{1} x S^{1}=\{(\theta, T), 0 \leq \theta, T<2 \pi\}$

A torus is the product of 2 circles.

$$
\begin{aligned}
S^{3}= & {[((1 / \mathrm{sqrt} 2)(\cos \theta))} \\
& ((1 / \mathrm{sqrt} 2)(\sin \theta)) \\
& ((1 / \mathrm{sqrt2})(\operatorname{cost})) \\
& ((1 / \mathrm{sqrt} 2)(\operatorname{sint}))]
\end{aligned}
$$

Equations (2D)

$\mathrm{t}=(\mathrm{x} /(1-\mathrm{y}))$

Equations (3D)

$(x, y, z) \rightarrow((x /(1-z)),(y /(1-z)))$

Modeling the Clifford Torus

This project started in DPGraph.
Using the equations from the previous slide, we plug those into DPGraph to get:
graph3d(rectangular(

$$
.707^{*} \cos (u+v) /\left(1.0-.707^{*} \sin (u-v)\right)
$$

$$
.707 * \sin (u+v) /(1.0-.707 * \sin (u-v))
$$

$$
\left..707^{*} \cos (u-v) /\left(1.0-.707^{*} \sin (u-v)\right)\right)
$$

)

OpenGL

From DPGraph, the Torus went to PyOpenGL.
The first attempt did not rotate so well, so, with help from Matt Hoffman, numpy matrix multiplication was implemented.

```
n0=.707*C(th+ta)
n1=.707*S(th+ta)
n2=.707* C(th-ta)
n3=.707*S(th-ta)
pointvector=numpy.array([n0,n1,n2,n3])
pointvector=numpy.dot(mat4,pointvector)
pointvector=numpy.dot(mat3,pointvector)
pointvector=numpy.dot(mat2,pointvector)
pointvector=numpy.dot(mat1,pointvector)
```


OpenGL

However, that wasn't quite right either. But a different similar method has seemed to have worked.

```
n0=.5*(C(th) + S(th))
n1=.5*(C(th) - S(th))
n2=.5*(C(ta) + S(ta))
n3=.5*(C(ta) - S(ta))
vert=numpy.array([n0,n1,n2,n3])
vert=numpy.dot(xmat,vert)
vert=numpy.dot(ymat,vert)
vert=numpy.dot(zmat,vert)
denominator = 1-vert[3]
glVertex3f(vert[0]/denominator, vert[1]/denominator, vert[2]/denominator)
```

Chaplin.py
Chaplin2.py

Syzygy

Fortunately, Chaplin.py managed to get into the cube.

sources

http://nylander.wordpress.com/2008/08/12/clifford-torus/ http://mathworld.wolfram.com/HopfMap.html http://www.math.brown.edu/~banchoff/art/PAC-9603/tour/torus/torus-math.html http://www.math.brown.edu/~banchoff/art/PAC-9603/tour/torus/torus-movies.html http://www.math.union.edu/~dpvc/math/4D/stereo-projection/welcome.html http://theory.org/geotopo/3-sphere/html/node4.html http://www.cutoutfoldup.com/980-clifford-torus.php

