The Hopf Fibration 
and the Clifford Torus





The Hopf Fibration


The Hopf Fibration, also known as the Hopf Map,  is a map of the 3-Sphere, a sphere in the 4th dimension, to the 3rd dimension.


It describes the 3-Sphere by using circles inside of an ordinary sphere, the 2-Sphere. 


3 Sphere and 2 Sphere

	If the 2 Sphere is a 3 dimensional shape, why is it not called the 3 sphere?



	The 2 Sphere is the 2nd dimension all wrapped up into a ball, giving it the 3rd dimension, but it keeps its name. The 3 Sphere is the 3rd dimension pushed into a sphere, thereby giving it a 4th. 




Dimensions


The equation for a 2-sphere is as shown above, with the xs being the distance from the center in the x, y, and z plane. 


S² = {(x1,x2,x3):x12+x22+x32=1}


Dimensions


S3 = {(X1,X2,X3,X4):X12+X22+X32+X42=1}


So the equation for a 3-Sphere, having only 1 more dimension, must be as shown above.


Dimensions


The Hopf Fibration takes (X1,X2,X3,X4) to (x1,x2,x3) with the following equations. 


x1= 2(X1X2+X3X4)
x2=2(X1X4-X2X3)
x3=(X12+X32)-(X22+X42)


The Hopf Fibration


The Hopf Map is a fibration. 


A fibration is a “map between topological spaces” that satisfies a certain “homotopy lifting property.” 

As we mentioned earlier, the Hopf Fibration is the map of the 3-Sphere to the 3rd dimension. 
Its fibers are great circles, so if we remove the poles, we now have a sphere composed of fibers. 


The Hopf Fibration



Each fiber is linked with
each other fiber exactly
once. 



The Clifford Torus


When stereographically projected from the fourth dimension to the 3rd dimension, the Hopf Fibration produces what is called a “Clifford Torus.” 



Clifford Torus




Equations

	Torus: S1xS1={(θ,τ),0≤θ, τ<2π}

	A torus is the product of 2 circles. 

	

	S3=[((1/sqrt2)(cosθ)) 

	 ((1/sqrt2)(sinθ))

	 ((1/sqrt2)(cosτ))

	 ((1/sqrt2)(sinτ))]




Equations (2D)


	t=(x/(1-y))




Equations (3D)


	(x,y,z)→((x/(1-z)),(y/(1-z)))




Modeling the Clifford Torus

	This project started in DPGraph.



graph3d(rectangular(
 .707*cos(u+v)/(1.0-.707*sin(u-v)),
 .707*sin(u+v)/(1.0-.707*sin(u-v)),
 .707*cos(u-v)/(1.0-.707*sin(u-v)))
 )

	Using the equations from the previous slide, we plug those into DPGraph to get:




OpenGL

	From DPGraph, the Torus went to PyOpenGL.



The first attempt did not rotate so well, so, with help from Matt Hoffman, numpy matrix multiplication was implemented.


	banclif12test_handmatr



 pointvector=numpy.dot(mat4,pointvector)
 pointvector=numpy.dot(mat3,pointvector)
 pointvector=numpy.dot(mat2,pointvector)
 pointvector=numpy.dot(mat1,pointvector)

 n0= .707*C(th+ta)
 n1= .707*S(th+ta)
 n2= .707* C(th-ta)
 n3= .707*S(th-ta)
 pointvector=numpy.array([n0,n1,n2,n3])


OpenGL

	However, that wasn't quite right either. 



 n0= .5*(C(th) + S(th))
 n1= .5*(C(th) - S(th))
 n2= .5*(C(ta) + S(ta))
 n3= .5*(C(ta) - S(ta))
 vert=numpy.array([n0,n1,n2,n3])
 
 vert=numpy.dot(xmat,vert)
 vert=numpy.dot(ymat,vert)
 vert=numpy.dot(zmat,vert)

 denominator = 1-vert[3]
 glVertex3f(vert[0]/denominator, vert[1]/denominator, vert[2]/denominator)

But a different similar method has seemed to have worked.

Chaplin.py

Chaplin2.py


Syzygy

	Fortunately, Chaplin.py managed to get into the cube.



SZGChaplin.py


http://nylander.wordpress.com/2008/08/12/clifford-torus/
http://mathworld.wolfram.com/HopfMap.html

http://www.math.brown.edu/~banchoff/art/PAC-9603/tour/torus/torus-math.html
http://www.math.brown.edu/~banchoff/art/PAC-9603/tour/torus/torus-movies.html
http://www.math.union.edu/~dpvc/math/4D/stereo-projection/welcome.html

http://theory.org/geotopo/3-sphere/html/node4.html
http://www.cutoutfoldup.com/980-clifford-torus.php
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