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The joint project FinalB.c is a simple bouncing simulation. Using kinematic equations
for projectile motion and conservation of momentum and energy for elastic collisions, an
adequate representation of two balls bouncing inside a box was created. While heavily influ-
enced by other programs, FinalB.c was essentially built from scratch. As a C and OpenGL
graphics program, writing the code was difficult since neither contributers Curtis Woodruff
nor Jeffrey Zhou had experiance in the C language before this project and no prior exposure
to programming before Math198, so this was an enlightening learning experiance.

Basically, the program is two balls in a box. The balls themselves move according to
basic kinematic equations. The most useful one is xf = xi + vt + 1

2
at2 which describes the

projectile motion of the ball as it is affected by gravity. Gravity is denoted as y accelera-
tion and air resistance and friction are of course ignored. This calculation is performed for
each axis. Each frame recalculates both from the change in time dt which is drawn from
sys\timeb.h and prevents lagging by being dependent on epoch time. Essentially, program
speed will be the same no matter how powerful the computer is, although the framerate may
become choppy on slower computers.

There are three different collisions utilized in the program. The first type is ball-wall col-
lision. The collision occurs if the distance between the wall plane and center of the sphere is
equal to or less than the radius. Upon detection, the final velocities of the previous kinematic
path are calculated, and set as the initial velocities of the new path. The velocity of the axis
that tripped the collision detection is then reversed. When dampening is activated, this new
velocity is multiplied by the dampening number which should be between 0 − 1 to decrease
the magnitude of the post-collision velocity. The initial position of the sphere is then set
to the last position it had before the collision. At the conclusion of these calculations, the
running timer is reset for the new kinematic path .

Ball-ball collisions work much the same way. The distance between the balls is
√
x2 + y2 + z2,

and if this is less than or equal to the sum of the radii of the two balls, a collision occurs.
Once again, the position is resets to the last precollision spot, but the velocity vectors are
determined with the equations ~v1 = ~u1 − a

m1

~k and ~v2 = ~u2 − a
m2

~k which are derived from the
following conservation of energy and momentum equations.

m =mass
~x =position vector
~u =velocity vector before collision
~v =velocity vector after collision
~k = ~x1−~x2

|~x1−~x2| =unit vector of collision
a =impulse magic thing

momentum= mv
m1~u1 +m2~u2 = m1~v1 +m2~v2
m1(~u1 − ~v1) = −m2(~u2 − ~v2)

change in momentum=impulse=ak
~v1 = ~u1 − a

m1

~k ~v2 = ~u2 − a
m2

~k
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kinetic energy= 1
2
mv2

1
2
m1(~u1 · ~u1) + 1

2
m2(~u2 · ~u2) = 1

2
m1(~v1 · ~v1) + 1

2
m2(~v2 · ~v2)

m1(~u1 · ~u1 − ~v1 · ~v1) = −m2(~u2 · ~u2 − ~v2 · ~v2)
m1(~u1 − ~v1) · (~u1 + ~v1) = −m2(~u2 − ~v2) · (~u2 + ~v2)
—————–m1(~u1 − ~v1) · (~u1 + ~v1) = ——————–−m2(~u2 − ~v2) · (~u2 + ~v2)

~k · (~u1 + ~v1) = ~k · (~u2 + ~v2)

~k · (~u1 + ~u1 − a
m1

~k) = ~k · (~u2 + ~u2 − a
m2

~k)

2~k · (~u1 − ~u2) = a( a
m1

+ a
m2

)

a = 2~k · (~u1 − ~u2)/(
1
m1

+ 1
m2

)

m1(~u1 − ~v1) = −m2(~u2 − ~v2) = a~k

Ball-curved floor collisions use similar methods as ball-ball collisions, although detection
is much more difficult. By running an r-theta loop, we plot a spiral of points beneath the
profile of the sphere starting at the center to the x-z plane. The y values are then calculated
from the floor equation. Then, the 3-d distance formula checks for collision with the sphere
(distance should be less than or equal to the radius). The same math as the ball collision
is used for the reflection off the floor, however mass is eliminated from the equation. The
normal vector is the vector from the center of the sphere to the collision point on the floor.

While the mathmatics provide the principle behind the program, actually graphically
demonstrating the physics is entirely different. The choice of C and OpenGL made it a little
difficult to find good examples, which is the main reason that the program was built from
scratch. Fortunately, two programs, bnc.c and dinoshade helped immensely for laying out
the framework. The camera controls were heaviliy influenced by dinoshade which utilized
mouse click-and-drag to change the camera angles. This project’s controls however give
both control of position of the camera as well as the focus point which most other programs
encountered did not. The movements were simply a matter of keeping the camera view
vector parrallel while moving which involved simply shifting both the view and camera po-
sitions equally the same way by adding a constant. The angle of the camera was a bit more
difficult, and drew more heavily from dinoshade. Looking in the verticle direction simply
meant moving the focus point up and down since the max look above and below the horizon
was limited to prevent flipping and such. Along the horizontal plane, the view point had to
follow a circular path since 360◦ turns would have to be possible.

The box and floor is just extensive use of GL_LINES. The ground plane based off of
y = x × 1.05−x

2−z2 was shifted over to center around (q/2, q/2, q/2) and the lines were
staggered diagonally instead to make the slopes more obvious. It was suggested to draw lox-
odromic spheres instead of using the solid sphere from the glut library. This was an attempt
to make the CUBE version of the program more functional since the solid spheres show depth
poorly in the CUBE. The math required to draw these spheres is below. A GL_LINE_STRIP

was used to connect the points. θ and τ are incremented simultaneously across the specified
ranges to produce the loxodromic sphere, which has a coiled appearance.
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10◦ ≤ θ ≤ 350◦ × 10
−90◦ ≤ τ ≤ 90◦

x = cos(θ) cos(τ) × radius
y = sin(θ)cos(τ) × radius

z = sin(τ) × radius

The keyboard functions are mostly for camera controlling as they determine the value
of SPEED which essentially controls the camera position and angle. For this reason, it is
impossible to give multiple simultaneous camera commands and SPEED can only have one
value at a time and affect one function at a time. Other than that, the ”esc” button exits
the program.

Broken down, these three parts, path, collisions, and graphics, work together to create a
fairly accurate physics simulation of two balls bouncing inside a box. Further information can
be found on our sites which can be found on http://new.math.uiuc.edu/math198/MA198-
2009/. From starting with no knowledge of programming to a buggy but still operational
project, we have succeeded and becoming familiar with computer coding. This may come in
handy in the future, and later students may look to this to improve upon it.
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