
Creating a Skybox in Python

Justin Schirle

Abstract
Implementing a skybox into a program can be useful for adding an

aesthetic appeal by creating a 3D enviroment which gives the illusion of
infinite space. It can be done fairly simply in OpenGL by creating a cube
which is unaffected by depth and translations, and by applying textures
to each face of the cube.

1 Loading Textures

Before rendering the skybox, one must load the textures which will be later
used. For this, and throughout, I will assume that you have the PIL Imaging
library in addition to the OpenGL libraries. The first step is importing these
libraries:

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
import sys
from PIL import Image

We now begin loading the images for our textures, and then binding them.
This should all be done during the start of the program, so that they are only
loaded once. Otherwise the program will load the images for each frame which
would make the program run extremely slowly. For a typical PySkel SZG pro-
gram, this is done in onWindowStartGL. The portion run in the start will be a
function loadskybox().

def loadskybox():

All the commands will be within this function until otherwise noted. First
we load our images.

im1 = Image.open("file.jpg").rotate(180).transpose(Image.FLIP LEFT RIGHT).resize((512,512))
texture1 = im1.tostring()

We use the command Image.open from the PIL library to open and read the
file. Be sure to specify the correct path to your file. The rotate and transpose

1



are used here to correct the orientation of the image. If we were to simply load
the image and then redisplay it, it would appear upside-down. We send the
data to a string - a usable format - using im.tostring(). This process should
be repeated for each of the 6 images that will be used for the cube faces. For the
back and left faces, you should not use transpose(Image.FLIP LEFT RIGHT),
because our view of them from inside the cube flips them naturally. This will
make more sense when you create your box. Finally, we resize the image to
512x512 pixels. These dimensions can be changed, however later it will be
necessary for them to be a power of 2 (256x256, 512x512, 1024x1024,...) If a
high resolution is used, it may not run on some graphics cards. This can be
easily fixed by lowering the resolution.

2 Creating Textures

Now that the images are loaded, we must bind them to textures so that they
can be used later. We begin by generating a texture:

glGenTextures(1)

The 1 means that it will generate one texture. The first time glGenTextures(1)
is used, the output will be 1. Each time after that, it will output an integer
which is one greater than the previous time. So the second time it will output a
value of 2. It should be noted that if glGenTextures is used in a Python shell,
it will output a large integer. This is not how it behaves if it is used in code.
Next we bind the textures:

glBindTexture(GL TEXTURE 2D, 1)

This binds a 2D texture to 1, the texture we generated above. For the second
texture, you will use glBindTexture(GL TEXTURE 2D, 2) and so on. Next we
define the parameters of the texture:

glPixelStorei(GL UNPACK ALIGNMENT, 1)
glTexParameterf(GL TEXTURE 2D, GL TEXTURE WRAP S, GL CLAMP)
glTexParameterf(GL TEXTURE 2D, GL TEXTURE WRAP T, GL CLAMP)
glTexParameterf(GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL NEAREST)
glTexParameterf(GL TEXTURE 2D, GL TEXTURE MIN FILTER, GL NEAREST)
glTexImage2D(GL TEXTURE 2D, 0, GL RGB, 512, 512, 0, GL RGB, GL UNSIGNED BYTE,
texture1)

The glPixelStorei sets how the pixels will be stored for the 2D texture.
The GL CLAMP means that the textures will be clamped at the edges on both
the sides and top/bottom. (GL TEXTURE WRAP S and GL TEXTURE WRAP T), as
opposed to having the texture repeated to fill the space, which would be ac-
complished with GL REPEAT. I do not really understand entirely what the final

2



two parameters do. One could also use GL LINEAR instead of GL NEAREST, but
I am not sure of the difference. Finally, the nine arguments of the glTexIm-
age2D. The first is the target texture and should be left as GL TEXTURE 2D. The
second is the detail level, and should be left at 0. The third is the color type
of the texture, in this case just GL RGB. The fourth and fifth are the width and
height. These need to be a power of 2, and should be the same size as your
resized images from before. The sixth argument is the border type, which must
be either 0 or 1. The seventh is the pixel format of the images loaded as tex-
tures, usually GL RGB. The eighth is the data type of the image, which should
be GL UNSIGNED BYTE. The final part of the glTexImage2D is a pointer to your
image data. This is the string of image data from before, which in this case is
texture1. Once you have done this for your first texture, repeat it for the other
5 textures of the skybox. The only thing that needs to be changed each time is
the number in glBindTexture, and the last entry of glTexImage2D.

3 Rendering

Once the textures have been loaded, we are able to draw our skybox. We begin
by defining a new function:

def drawskybox():

Everything following is within this function. This should be called to draw
the skybox, and it is important that this is done before all other objects are
drawn. This is so that the skybox is in the background and does not cover other
things up. For a typical PySkel SZG program, this should be called in onDraw.
First, certain parameters must be changed to use the textures:

glEnable(GL TEXTURE 2D)
glDisable(GL DEPTH TEST)

This enables 2D textures, and turns off the depth test. This means the sky-
box will be unaffected by translation (but rotation still affects it). To render
the skybox, we will draw 6 quadrilaterals.

glColor3f(1,1,1) # front face
glBindTexture(GL TEXTURE 2D, 1)
glBegin(GL QUADS)
glTexCoord2f(0, 0)
glVertex3f(-10.0, -10.0, -10.0)
glTexCoord2f(1, 0)
glVertex3f(10.0, -10.0, -10.0)
glTexCoord2f(1, 1)
glVertex3f(10.0, 10.0, -10.0)
glTexCoord2f(0, 1)

3



glVertex3f(-10.0, 10.0, -10.0)
glEnd()

We first define the color to be white. This the textures are drawn using all
colors. Before drawing the quadrilaterals, we must bind the texture we want
to use. In this case, we are using texture 1. glBindTexture() cannot be used
between glBegin() and glEnd(). We then establish the coordinates of the
texture using glTexCoord2f and the vertices. The vertices might need to be
changed to fit your needs. For subsequent faces, simply bind a different texture
and change the vertices. The same texture coordinates are used each time. Af-
ter each of the faces has been drawn, do the following:

glBindTexture(GL TEXTURE 2D, 0)
glEnable(GL DEPTH TEST)

The 0 texture is the null texture. If we do not bind it, all subsequent objects
will be rendering with colors of the last texture used, and they will not look
correct. We then enable the depth test and continue with the program.

4


