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0.1 Abstract

This project will provide a summary of the transmission of Greek mathe-
matics through the Islamic world, the resulting development of algebra by
Muhammad ibn Musa al-Khwarizmi, and the applications of Islamic algebra
in modern mathematics through the formulation of the Fundamental Theo-
rem of Algebra. In addition to this, I will attempt to address several cultural
issues surrounding the development of algebra by Persian mathematicians
and the transmission of Greek mathematics through Islamic mathematicians.
These cultural issues include the following questions:

� Why was the geometry of Euclid transmitted verbatim while algebra was
created and innovated by Muslim mathematicians?

� Why didn’t the Persian mathematicians expand or invent new theorems
or proofs, though they preserved the definition-theorem-proof model for ge-
ometry? In addition, why did the definition-theorem-proof model not carry
over from Greek mathematics (such as geometry) to algebra?

� Why were most of the leading mathematicians, in this time period, Mus-
lim? In addition, why were there no Jewish mathematicians until recently?
Why were there no Orthodox or Arab Christian mathematicians?

0.2 Arabic Names and Transliteration

Arabic names are probably unfamiliar to many readers, so a note on how
to read Arabic names may be helpful. A child of a Muslim family usually
receives a first name (’ism), followed by the phrase “son of · · · ” (ibn · · · ).
For example, Thābit ibn Qurra is Thābit, son of Qurra. Genealogies can
be combined; for example, Ibrāh̄ım ibn Sinān ibn Thābit ibn Qurra means
that Ibrāh̄ım is the son of Sinān, grandson of Thābit, and great-grandson of
Qurra. A name indicating the tribe or place of origin (nisba), such as al-
Khwārizmı̄ (or, from Khwārizm), may also be added, as well as a nickname
or title, such as al-Rash̄ıd (“the orthodox”). Later in life, Abū so-and-so (fa-
ther of so-and-so) can be added to the name, such as Abū ‘Abdullāh (father
of ‘Abdullāh). In the transliteration of Arabic into English, Arabic short
vowels are denoted with regular English vowels, while Arabic long vowels
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are denoted with bars over the English vowel (ā). The following is a list
of the full Arabic names of the Muslim mathematicians and rulers that will
be discussed, with the correct transliteration into English. From this point
onward, I will omit the vowel bars in these names.

Caliph Abū Jafar al-Ma‘mun ibn Harun (786-833 CE; r. 813-833 CE)
Al-Hajjāj ibn Yūsuf ibn Matar (c. 786-833 CE)
Abū ‘Abdullah Muhammad Ibn Mūsā Al-Khwārizmı̄ (800-847 CE)
Thābit ibn Qurra al-Harrān̄ı (836-901 CE)
Abū Kāmil Shujū‘ ibn Aslam ibn Muhammad ibn Shujā (c. 850-930 CE)
Abū Nasr al-Farabi (870-950 CE)
Ibrāh̄ım ibn Sinān ibn Thābit ibn Qurra (908-946 CE)
Caliph Abū al-Qāsim al-Muti ‘llāh al-Fadhl ibn Ja‘far al-Muqtadir (914-975
CE; r. 946-974 CE)
Emir ‘Adud al-Daula (936-983 CE; r. 950-983)
Mohammad Abū’l-Wafa (940-998 CE)
Abū Sahl Wayjan ibn Rustam al-Qūh̄ı (c. 940-1000 CE)
Abū Bakr ibn Muhammad ibn al-Husayn al-Karaj̄ı (953-1029 CE)
Ibn Yahyā al-Maghrib̄ı al-Samaw‘al (1130-1180 CE)
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Chapter 1

Algebra

1.1 Introduction

Islamic mathematics refers to the mathematical theories and practices that
flourished in the parts of the world where Islam was the dominant religious
and cultural influence. Along with transmissions of Greek mathematics, Mus-
lim mathematicians in the Islamic Medieval Empire expanded on the Greek
concepts of geometry, astronomy, medicine, and arithmetic. Muslim scholars
also consolidated Greek and Indian mathematics to form the beginnings of
modern algebra. The House of Wisdom (bayt al-hikma) was established by
the Abbasid caliph al-Rashid, and flourished under the caliph al-Ma’mun. It
was at the House of Wisdom that al-Khwarizmi and others translated Greek
and Indian mathematical and scientific works. The historical development
of algebra will be the focus of this first chapter.

1.2 Al-Khwarizmi

1.2.1 Biography

We begin with a discussion of al-Khwarizmi, the father of algebra. Abu
‘Abdullah Muhammad Ibn Musa Al-Khwarizmi lived about 800-847 CE, but
these dates are uncertain. The epithet “al-Khwarizmi” refers to his place
of origin, Khwarizm or Khorezm, which is located south of the delta of the
Amu Dar’ya River and the Aral Sea in central Asia. However, the historian
al-Tabari adds the epithet “al-Qutrubbulli,” indicating that al-Khwarizmi
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actually came from Qutrubull, near Baghdad between the Tigris and the
Euphrates Rivers [06], 50. Other sources state that his “stock” comes from
Khwarizm, so perhaps al-Khwarizmi’s ancestors, rather than himself, come
from Khwarizm [09], 3. Another interesting epithet added by al-Tabari is
“al-Majusi,” which would mean that al-Khwarizmi was an adherent of the
Zoroastrian religion. However, al-Khwarizmi’s preface to his treatise on al-
gebra shows beyond doubt that he was a devout Muslim; perhaps some of
his ancestors or even al-Khwarizmi in his youth were Zoroastrian [06], 52.

Al-Khwarizmi grew up near Baghdad under the reign of Caliph al-Ma’mun
(reign 813-833 CE), who was a great promoter of science. Al-Khwarizmi was
offered a position at the Bayt al-Hikma (House of Wisdom) in Baghdad; most
of his treatises are dedicated to the Caliph al-Ma’mun [06], 53.

1.2.2 Al-Khwarizmi’s Mathematical Contribution

Astronomy Most of al-Khwarizmi’s treatises are in the field of astronomy.
He was one of the developers of the astrolabe and also wrote about a hun-
dred astronomical tables. One of these, Zij al-sindhind, is the first Arab
astronomical work to survive in its entirety [06], 55-6. He also wrote a ge-
ography text, Kitab surat al-ard, which listed the longitudes and latitudes of
cities and localities. This was based on al-Ma’mun’s world map, on which
al-Khwarizmi had worked, which was in turn based on Ptolemy’s Geography.
However, al-Ma’mun’s world map was much more accurate than Ptolemy’s,
especially in concerning the Islamic world [09], 9.

Calendar Another surviving work of al-Khwarizmi is his work on the Jew-
ish calendar, which accurately describes the 19-year cycle, its seven months,
and the rules for determining which day of the week the month of Tishri
begins on. He also calculates the interval between the Jewish Era, or the
creation of Adam, and the Selucdid era, which began October 1, 312 BC.
Finally, al-Khwarizmi includes a method for determining the mean longitude
of the sun and moon [06], 58.

Arithmetic In addition to his works on algebra, the treatises of al-Khwarizmi
which have ensured his lasting fame are his works on arithmetic. His arith-
metic treatise was possibly entitled Kitab al-iam wa’l-tafriq bi-hisab al-Hind,
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or Book of Addition and Subtraction by the Method of Calculation of the Hin-
dus [06], 59-60. However, the original Arabic manuscript is now lost, and
his text survives only in its Latin translation, which may have been done by
Adelard of Bath in the 12th century. It was first published as Algoritmi de
numero indorum by B. Boncompagni in 1857, and later published as Mo-
hammed ibn Musa Alchwarizmi’s Algorithmus by Kurt Vogel in 1963 [09], 9.
This is the first known textbook written on the decimal system, and it is the
first treatise to “systematically expound the use of the Arabic (or sometimes
Hindu-Arabic) numerals 1-9, 0 and the place-value system” [06], 61. The in-
troduction of the numeral 0 was most important; the “small circle is actually
one of the world’s greatest mathematical innovation” [06], 62. The symbol
0 was used for about 250 years in the Islamic world after its introduction by
al-Khwarizmi before the Western world ever knew of it.

Modern numeral notation certainly has its roots in al-Khwarizmi and other
Arab mathematicians; though influenced by Hindu numerals, al-Khwarizmi
and his Arab successors introduced the full concept of ten numbers and the
method of decimal notation [06], 63-5. Al-Khwarizmi introduced the zero,
and his accounts of Hindu numerals were so accurate that he is probably re-
sponsible for the widespread belief that our system of numeration is Arabic.
Though al-Khwarizmi never claimed originality regarding his number system,
Latin translations of his work were widespread in Europe, and careless read-
ers attributed both the book and the numeration to the author [05], 256. It
is this association with numbers which led to the distortion of al-Khwarizmi’s
name to algorismi, which in turn led to the modern word algorithm.

1.2.3 Al-Khwarizmi’s “Algebra”

al-jabr and al-muqabalah For the interests of this paper, the topic of
most importance will be al-Khwarizmi’s treatise Kitab al-jabr wa’l-muqabalah,
or The Book of Restoring and Balancing [05], 256. The meanings of the words
al-jabr and al-muqabalah are debated. Al-jabr, which comes to us in its form
“algebra,” probably meant something like “restoration” or “completion,” re-
ferring to the transposition of subtracted terms to the other side of the equa-
tion or adding equal terms to both sides of the equation to eliminate negative
terms [05], 257. Al-muqabalah probably means something like “restoration”
or “balancing,” referring to the cancellation of like terms on opposite sides
of the equation, or reduction of positive terms by subtracting equal amounts
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from both sides of the equation [05], 257. Together, the two words al-jabr
wa’l-muqabalah can mean the science of algebra. Al-Khwarizmi’s treatise was
the first book to use this title to designate algebra as a separate discipline.

It may be helpful to see examples of how al-Khwarizmi used these terms.
He first poses the problem:

I have divided ten into two portions. I have multiplied the one of
the two portions by the other. After this I have multiplied one of
the two by itself, and the product of the multiplication by itself
is four times as much as that of one of the portions by the other.
[09], 4

Al-Khwarizmi calls one of the portions “thing” and the other “ten minus
thing.” He multiplies by two, getting “ten things minus a square,” and then
obtains (in modern notation):

x2 = 40x− 4x2

He uses al-jabr to add 4x2 to both sides, which yields:

5x2 = 40x

Al-Khwarizmi then gets
x2 = 8x

from which he obtains
x = 8

(It is apparent to the modern reader that al-Khwarizmi does not allow x to
equal 0.) On another page, al-Khwarizmi has the equation: [09], 4-5

50 + x2 = 29 + 10x

He uses al-muqabalah to reduce both sides by 29 to obtain:

21 + x2 = 10x
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Origins of Algebra It is important to note that the origin of algebra does
extend back to the ancient Egyptians and Babylonians, who had texts dealing
with problems of arithmetic, algebra, and geometry as early as 2000 BC. In
Diophantus’ Arithmetica, several equations had already appeared. However,
these equations were solved as parts of solutions to other problems and were
not systematically treated. Al-Khwarizmi was the first to systematically
study algebra. Though Diophantus’ equations existed, al-Khwarizmi was
probably not aware of them at the time he wrote his treatise; al-Khwarizmi
did not know Greek, and there was no Arabic translation of Arithmetica at
the time [06], 69-71. Al-Khwarizmi was probably more influenced by Hindu
or local Syriac-Persian-Hebrew sources. However, none of these sources pro-
gressed as far as al-Khwarizmi; the few texts that do seem to have been
written after Kitab al-jabr wa’l-muqabalah [06], 72. There seems to be no
basis for the common Western view, present in Algebra: Pure and Applied
by Aigli Papantonopoulou, which states that al-Khwarizmi is not an “orig-
inal mathematician,” since “there is little in his work that cannot be found
in earlier Indian sources” [07], 438.

Algebraic Equations Kitab al-jabr wa’l-muqabalah has three sections, the
first of which states that all linear and quadratic equations can be reduced
to one of six types: [09], 5.

ax2 = bx

ax2 = b

ax = b

ax2 + bx = c

ax2 + c = bx

ax2 = bx+ c

He presents general solutions for all of these types. Looking at these six
equations, it is apparent that al-Khwarizmi did not accept negative or zero
coefficients [06], 74-5.

Al-Khwarizmi’s treatment of mixed quadratic equations (“roots and num-
bers equal to squares,” “squares and numbers equal to roots,” and “roots
and numbers equal to squares”) is best seen with an example of the first
type of mixed quadratic equations. In al-Khwarizmi’s words:
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Roots and Squares equal to numbers
For instance: one square and ten roots of the same amount to
thirty-nine dirhems; that is to say, what must be the square
which, when increased by ten of its own roots, amounts to thirty-
nine?
The solution is: you halve the number of roots, which in the
present instance yields five. This you multiply by itself; the prod-
uct is twenty-five. Add this to thirty-nine; the sum is sixty-four.
Now take the root of this, which is eight, and subtract from it
half the number of the roots, which is four. The remainder is
three. This is the root of the square you thought for; the square
itself is nine. [06], 77

In modern notation, the equation is

x2 + 10x = 39

and al-Khwarizmi’s solution is then

(x+ 5)2 = 39 + 25 = 64

x+ 5 =
√

64 = 8

x = 8− 5 = 3

x2 = 9

Al-Khwarizmi demonstrates this solution with a square AB, the side of which
is the desired root x. On each of the four sides, he constructs rectangles, each
having 2.5 as their width. So, the square together with the four rectangles is
equal to 39. To complete the square EH, al-Khwarizmi adds four times the
square of 2.5, or 25. So the area of the large square EH is 64, and its side is
8. Thus, the side x of the original square AB is 8 − 5 = 3 [09], 8. (See the
figure below.)
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Al-Khwarizmi also presents a simpler, similar method which constructs
rectangles of breadth 5 on two sides of the square AB. Then, the total area
of the square EH is x2 + 10x + 25 = 39 + 25 = 64, which yields the same
result x = 3 or x2 = 9 [09], 8. (See the figure below.)

Al-Khwarizmi also discusses methods of extracting the square root; this
method may have been adapted from Hindu sources. It may be easiest to
explain the method with an example. To find the square root of 107584,
“vertical lines are drawn and numerals are partitioned into periods of two
digits” [01], 53. The nearest root of 10 is 3, and so its square 9 is subtracted
from 10. The 3 is written below everything as a part of the final square root.
The 3 is doubled to make 6, which is contained twice in 17; 6 · 2 = 12, so 12



CHAPTER 1. ALGEBRA 12

is subtracted from 17 which leaves 5. So 2 is written at the bottom as the
next part of the final square root. Then, the square of 2 (which is 4) is then
subtracted from 55, which leaves 51. So 518 is then divided by the double of
32 (which is 64), leaving 8. So 8 · 64 = 512 is subtracted from 518 leaving 6.
The last figure then is 64, which is 8 squared, so the last figure of the final
square root is 8. Therefore, the square root of 107584 is 328 [01], 53. (See
the figure below.)

Mensuration Al-Khwarizmi’s second chapter of Algebra is concerned with
mensuration. It outlines rules for computing areas and volumes. The area
of a circle can be found by multiplying half of the diameter by half of the
circumference. To find the circumference, al-Khwarizmi provides three rules.
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With the diameter d and the periphery p, and the approximate value of
π = p/d:

p = 3
1

7
d, or π ≈ 3.1439

p =
√

10d2, or π ≈ 3.1623

p =
62832

20000
d, or π ≈ 3.1416

The first rule was formulated by Archimedes and was also given in Metrica by
Heron of Alexandria and the Hebrew treatise Mishnat ha-Middot. The second
rule given can be found in the Brahmasphutasiddhanta of Brahmagupta. The
third (equivalent to the accurate estimate π ≈ 3.1416) is ascribed to “the
astronomers” by al-Khwarizmi, which may refer to the Hindu astronomer
Aryabhata; the same rule can be found in his Aryabhatiya [09], 6.

Al-Khwarizmi also states that for a rectangular triangle with sides a, b c,
with a and b the “short” sides of the triangle, [09], 6

a2 + b2 = c2

He provides a proof in the text; however, his proof is only valid for an equi-
lateral triangle, when a = b. From this, it is apparent that al-Khwarizmi’s
main source cannot be a classical Greek treatise like Euclid’s Elements. The
Hebrew treatise Mishnat ha-Middot is closely connected with al-Khwarizmi’s
chapter on mensuration, which shows some type of direct dependence or a
common source of both. If Solomon Gandz is correct that the author of the
Hebrew treatise was Rabbi Nehemiah, who lived about 150 CE, al-Khwarizmi
may have relied on the treatise or a Perian or Syrian translation of the text
[09], 6-7. However, other authors are quick to point out that Solomon Gandz’s
conclusion is not well-supported, which leaves the date of origination of Mish-
nat ha-Middot open even until the period after al-Khwarizmi published his
Algebra. Gad Sarfatti contends that Mishnat ha-Middot was not written un-
til a later Islamic period, and may be an adaption of al-Khwarizmi’s work
[06], 72.

Legacies The last chapter of Algebra is the largest, and it is concerned
mainly with legacies. It consists entirely of problems and solutions involving
simple arithmetic and linear equations. These problems are not going to be
discussed here as they use the same algebra already discussed and require an
extensive knowledge of Islamic inheritance laws [09], 7.
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Influence Al-Khwarizmi’s Algebra was popular as soon as it was published,
and Muslim mathematicians commented on it during al-Khwarizmi’s lifetime.
Algebra first became popular in the West when European scholars, such as
Adelard of Bath (1120 AD) and Robert of Chester (1140 AD), began trans-
lating Arabic works into Latin. Leonardo of Pisa, also known as Fibonacci,
includes many of the problems posed by al-Khwarizmi. However, these are
most likely taken from Abu Kamil’s texts, which use many of al-Khwarizmi’s
problems and solutions. William of Luna, another Italian mathematician,
translated Algebra into Italian in the early 13th century; this translation was
referenced by several scholars in the 16th century [06], 87. Al-Khwarizmi’s
treatise influence has reached the works of Johannes de Muris in the 14th cen-
tury, Regiomontanus in the 15th century, and Adam Riese, Perez de Moya,
Cardan, and Adrian Romain in the 16th century [06], 89-91. Even today,
some elementary algebra teachers use al-Khwarizmi’s suggestions, equations,
and geometrical representations even without knowing their source. Mohini
Mohamed summarizes al-Khwarizmi’s lasting influence quite well, and so I
leave the conclusion of his legacy to her:

At the time of his death, the legacy that al-Khwarizmi left to the
Islamic community included a way of representing numbers that
led to a convenient method of computing, even with fractions; a
science of algebra that would help settle problems of inheritance;
and a world map that is more accurate than ever before.

In the western world, mathematical science was more vitally influ-
enced by al-Khwarizmi than by any other medieval writer. It is to
al-Khwarizmi that we owe the widespread use of Arabic numerals.
Positional notation in base 10, the free use of irrational numbers,
and his introduction of algebra in the modern sense made him
the principle figure in the history of Muslim mathematics. His
introduction of Arabic numerals changed the content and char-
acter of mathematics and revolutionized the common practice of
calculation in Medieval Europe. With the integration of Greek,
Hindu, and perhaps Babylonian mathematics in his Algebra, this
text is one of the best representations of the international char-
acter of Islamic Medieval Civilization. Among others, the words
algebra, algorithm, cipher, and root survive as witnesses of the
role played by al-Khwarizmi in the foundation and diffusion of
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the science of calculation. [06], 91-2

1.3 Further Algebraic Developments

After al-Khwarizmi’s innovative text Algebra, the development of algebra did
not come to a stand-still. Several Muslim mathematicians are known for their
work regarding algebraic developments.

Thabit ibn Qurra Thabit ibn Qurra (836-901 CE) followed al-Khwarizmi’s
general solutions; however, al-Khwarizmi presents his general proofs in con-
junction with particular equations, whereas ibn Qurra presents his demon-
strations in general. At this point, ibn Qurra had full access to Euclid’s
Elements, and freely used Euclid’s theorems in his algebraic proofs. In the
case x2 + px = q, ibn Qurra correctly finds that x =

√
q + (p

2
)2 − (p

2
) [03],

104-6. He follows his demonstrations with general proofs, following Euclid’s
examples of the definition-theorem-proof model.

Abu Kamil Abu Kamil (c. 850-930 CE) wrote a treatise titled Algebra,
which was a commentary on al-Khwarizmi’s work. His examples were later
used by both the Muslim scholar al-Karaji in the late 10th century and the
Italian Leonardo of Pisa, or Fibonacci, in the late 12th century. Many of his
examples are taken from al-Khwarizmi, and like al-Khwarizmi’s work, the
entire work is written out, including numbers. Abu Kamil also discusses the
geometrical proofs of equation solutions in terms of specific examples, like al-
Khwarizmi, rather than using general proofs like ibn Qurra. Abu Kamil does
go beyond the algebra of either ibn Qurra and al-Khwarizmi by providing
rules for manipulating the following algebraic quantities:

(a± px)(b± qx) = ab± bpx± aqx+ pqx2

(a± px)(b∓ qx) = ab± bpx∓ aqx− pqx2

√
a · b =

√
a ·
√
b√

a/b =
√
a/
√
b

√
a±
√
b =

√
a+ b± 2

√
ab

Abu Kamil gives both algebraic and geometrical proofs for these equations
[03], 108-10.
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Al-Karaji Al-Karaji (953-1029 CE) tends to apply arithmetic to algebra,
in contrast to Abu Kamil and ibn Qurra, both of whom apply geometry to
algebra. Abu Bakr al-Karaji wrote The Marvellous, in which he develops the
algebra of expressions using high powers of the unknown. He uses “root,”
“side,” or “thing,” to denote x, “mal” for x2, “cube” for x3, “mal mal” for
x4, “mal cube” for x5, and so on. He creates each power of the unknown by
multiplication by the previous elements; this was in innovation which allowed
al-Karaji to treating equations such as x4 + 4x3− 6 and 5x6− (2x2 + 3) [03],
111-4.

1.3.1 al-Samaw’al

Ibn Yahya al-Maghribi al-Samaw‘al (1130-1180 CE) was born in Baghdad.
Though born to a Jewish family, he converted to Islam in 1163 after he had
a dream telling him to do so. He was a popular medical doctor, and traveled
around modern-day Iran to care for his patients, which included princes. His
The Shining Book on Calculation gives rules for signs, creating the concepts
of positive (excess) and negative (deficiency) numbers. He then gives rules
for subtracting powers:

(−axn)− (−bxn) = −(axn − bxn), if a > b

(−axn)− (−bxn) = +(bxn − axn), if a < b

Al-Samaw’al sets out a chart to teach the reader how to multiply and divide
simple expressions, such as “part of mal cube” or “mal mal cube”, which
are equal to 1

x5 and x7. He also gives examples of the division of complex
polynomials, which was a great development in algebra. His first example
shows how to solve: [03], 115-7

20x6 + 2x5 + 58x4 + 75x3 + 125x2 + 96x+ 94 + 140x−1 + 50x−2 + 90x−3 + 20x−4

2x3 + 5x+ 5 + 10x−1

He creates a chart (see figure below) with the top row as the names of the
orders in the natural sequence from left to right, and the row below that as
the row of the answer, which begins empty and the is filled in as he proceeds.
The rest of the chart is divided into horizontal bands, with two rows each
[03], 115-7.



CHAPTER 1. ALGEBRA 17

Al-Samaw’al begins by dividing 20cc by 2c to obtain 10c, and then sub-
tracts (10c · divider) from the dividend. The old dividend is replaced by
the remainder after the subtraction, and the divisor is copied to the right.
Repeating this procedure, the leading 2 of the new dividend is divided by the
2 of the divisor, and the quotient, 1, is placed in the column to the right of
the 10, in the answer row. Al-Samaw’al proceeds by repeating the procedure
until he reaches his final result, which is

10x3 + x2 + 4x+ 10 + 8x−2 + 2x−3

Al-Samaw’al follows this example with several others, repeating the same
procedure but allowing negative coefficients. His discovery of the procedure
for long division was a significant achievement in Islamic algebra.

1.4 Sources

It is important to look at the sources al-Khwarizmi used, to determine the
influences of Greek mathematics on his algebra. It is also important to
discuss the modern sources of al-Khwarizmi, or how modern scholars know
of al-Khwarizmi’s work.
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1.4.1 Al-Khwarizmi’s Sources

It is natural to begin by looking of the sources used by al-Khwarizmi. There
have been three theories advocated regarding the sources used by al-Khwarizmi
at the beginning of algebra; these include the theories that he used classical
Greek sources, or Hindu sources, or popular Syriac-Persian-Hebrew mathe-
matical writings [09], 13.

According to Toomer, as discussed in B.L. van der Waerden’s A History
of Algebra: From al-Khwarizmi to Emmy Noether, both Hindu and Greek
algebra had advanced well beyond the elementary stage of al-Khwarizmi’s
work. The proofs included throughout his work do not bear significant re-
semblances to known works from either culture. For example, his proofs of
the methods of solution of quadratic equations drastically differ from the
proofs found in Euclid’s Elements [09], 14. Further, the surviving algebraic
treatise of Greek culture, written by Diophantos, had developed towards
symbolic representation, while al-Khwarizmi’s treatise is rhetorical. In this
respect, al-Khwarizmi’s work is similar to that of Sanskrit algebraic works.
For these reasons, it seems unlikely that al-Khwarizmi was influenced to any
great extent by classical Greek mathematics.

Al-Khwarizmi did write a treatise on Hindu numerals, and two of his es-
timates for π are found in Hindu sources, supporting the theory that al-
Khwarizmi’s work was influenced by Hindu sources. Al-Khwarizmi further
referenced his sources in his section on Mensuration in his algebra book: [09],
14

The mathematicians, however, have two other rules for that. The
one of them is: multiply the diameter with itself, then with ten,
and then take the root of the product. The root gives the cir-
cumference.

The other rule is used by the astronomers among them, and reads:
multiply the diameter with sixty-two thousand eight hundred and
thirty-two and then divide it by twenty thousand. The quotient
gives the circumference.

The first rule (p =
√

10d2, in modern notation) is found in Chapter XII of
the Brahmasphutasiddhanta of Brahmagupta, supporting the theory that Al-
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Khwarizmi was familiar with Hindu algebraic treatises [09], 15. Al-Khwarizmi
attributed the second rule (p = 62832

20000
d, in modern notation) to “the as-

tronomers,” and the equation is found in the Aryabhatiya of the Hindu as-
tronomer Aryabhata from the early sixth century AD. As al-Khwarizmi used
both Persian and Hindu sources to compose his astronomical tables, it is
plausible that he also derived his estimates of π from these sources.

The third theory contends that al-Khwarizmi’s work was influenced by a lo-
cal Syriac-Perisan-Hebrew popular tradition. This is supported by the close
connection between the geometry of al-Khwarizmi and the Hebrew treatise
Mishnat ha-Middot. This theory has also been supported by Solomon Gandz,
the editor of Mishnat ha-Middot. He discusses his view of al-Khwarizmi as
the “antagonist of Greek influence,” stating that al-Khwarizmi never men-
tions his colleague, al-Hajjaj ibn Yusuf ibn Matar [09], 15. Al-Hajjaj devoted
his life to the translation of Greek mathematical, philosophical, and scientific
work into Arabic. However, al-Khwarizmi does not refer to Euclid and his
geometry while writing his own geometrical treatise; further, al-Khwarizmi
emphasizes his purpose of writing a practical algebraic treatise in contra-
diction to the Greek theoretical mathematics in the preface to his algebraic
treatise. Because of this, Soloman Gandz contends: [09], 15

Al-Khowarizmi [sic] appears to us not as a pupil of the Greeks
but, to the contrary, as the antagonist of al-Hajjaj and the Greek
school, as the representative of the native popular sciences. At
the Academy of Baghdad [House of Wisdom] al-Khowarizmi rep-
resented rather the reaction against the introduction of Greek
mathematics. His Algebra impresses us as a protest rather against
the Euclid translation and against the whole trend of the recep-
tion of the Greek sciences.

It seems likely that though al-Khwarizmi may not have been influenced by
Greek mathematics, a combination of the second and third theories may best
describe the influences on al-Khwarizmi’s algebra and geometry. Both Hindu
sources and the popular mathematics of Syriac-Persian-Hebrew sources seem
to be present in al-Khwarizmi’s work, as seen through his use of Brahmas-
phutasiddhanta, Aryabhatiya, and Mishnat ha-Middot, and through the lack
of similarities of al-Khwarizmi’s algebra and geometry to Greek algebra and
geometry.
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1.4.2 Modern Sources of Al-Khwarizmi

Equally important in our discussion of al-Khwarizmi’s work and his sources
are the sources modern historians and mathematicians use to know his work.
We know about medieval Islamic mathematics primarily through Arabic doc-
uments; the mathematical treatises of medieval Arab mathematicians can be
found in libraries and private collections throughout the world. These collec-
tions are mainly found in the countries which were once part of the Islamic
medieval world, but significant collections also exist in England, France, Ger-
many, and Russia: all countries which were colonial powers in the Islamic
world [04], 515-6.

Most of these treatises are prose compositions, but can include tables of
numbers, some with hundreds of thousands of entries. These tables were
computed mainly for astronomical purposes, and almost never include ex-
planations of how the numbers or entries were computed. Physical artifacts
also provide important sources of Islamic mathematics, such as mathemati-
cal and astronomical instruments. Examples of these artifact are three world
maps in the form of circular disks. These allowed the users to find the di-
rection of Mecca by rotating a ruler around the center of the disk [04], 516.
The lasting prose treatises, tables, and instruments allow modern scholars to
study medieval Islamic mathematics.

A good excerpt (translated to English) of Al-Khwarizmi’s Al-jabr... and
his treatise on Hindu numbers can be found in J. Lennart Berggren’s chapter
“Mathematics in Medieval Islam” in The Mathematics of Egypt, Mesopotamia,
China, India, and Islam: A Sourcebook, Princeton University Press, 2007.
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Geometry

Greek Sources After the late 8th century, Euclid’s The Elements were
translated into Arabic through the House of Wisdom in Baghdad. There
are many Arabic editions of and commentaries on The Elements, which
shows the influence Euclid had on Islamic mathematics, and especially on
Islamic geometry [03], 72. Muslim mathematicians also had a great respect
for Archimedes’ On the Sphere and Cylinder. In his preface, Archimedes
mentions his discovery of the area of a segment of a parabola; since his
treatise on this particular subject was not translated into Arabic, Thabit ibn
Qurra and his grandson Ibrahim ibn Sinan searched (with great success) for a
proof of Archimedes’ result. Thabit ibn Qurra actually translated or revised
translations of all of the Archimedean works existing in medieval Arabic, in-
cluding the text The Heptagon in the Circle, which Arabic sources attribute
to Archimedes but does not exist in Greek [03], 72.

Another important work in Islamic geometry was Apollonios of Perga’s The
Conics from about 200 BC. Though The Conics contained eight chapters
or books, only four exist in Greek and only seven in Arabic. These three
Greek scholars: Euclid, Archimedes, and Apollonios, formed the basis of Is-
lamic mathematics. Muslim mathematicians and translators are responsible
for the preservation and transmission of these texts through the medieval
period.

21
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2.1 Abu Sahl

Abu Sahl Wayjan ibn al-Kuhi lived around 940-1000 CE. He was from Kuh,
a mountainous area along the southern coast of the Caspian Sea in modern
Iran. (Kuh is the Persian word for mountain.) Abu Saul worked in the
Baghdad and is considered one of the greatest Muslim geometers in the 10th
century. Though Abu Sahl worked on many treatises on geometry and as-
trology, his explanation of the construction of a regular heptagon best shows
his innovation as a geometer and his contribution to Islamic mathematics
by providing solutions to “impossible” problems within known mathematical
theories [03], 77.

2.1.1 Regular Heptagon

Archimedes Archimedes’ construction of the regular heptagon was unex-
plained and unique in Greek mathematics, and so served more as a proof
of the existence of a regular heptagon than a construction of it [03], 78.
Archimedes’ regular heptagon followed this explanation: Begin with a square
ABDG and its diagonal BG. Archimedes then drew a line from D so it
crossed BG at point T , the side AG at point E, and the extension of side
BA at point Z. Then, the triangle AEZ has the same area as DTG. Next,
Archimedes drew KTL parallel to AG. He proved that K and A divide the
segment BZ so that the segments BK, KA, and AZ form a triangle and
so that BA · BK = ZA2 and KZ · KA = KB2. Then, he forms triangle
KHA so that KH = KB and AH = AZ, and draws a circle BHZ. Finally,
Archimedes proved that B̂H is 1

7
of the circumference of the circle [03], 78.

(See figure below.)
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Construction by Reduction Abu Sahl analyzed the problem backwards,
considering an already constructed heptagon and reasoning backwards. If his
chain of reasoning can be reversed, then Abu Sahl has the proof of what is re-
quired starting from a given to the finished heptagon. The following analysis
was provided in a treatise dedicated to King ‘Adud al-Daula, the Buwayhid
ruler of modern-day Iraq and Iran under the Abassid caliph Al-Muti. His
result showed that constructions which did not fit into any theories could be
fitted into the theory of conic sections, a new development in geometrical
thought.

First Reduction: From Heptagon to Triangle “Suppose that in the
circle ABG we have succeeded in constructing the side B̂G of a regular

heptagon and that ÂB = 2B̂G. Then arc ÂBG = 3B̂G, and since B̂G is

1/7th of the whole circumference, ÂDG = 4B̂G. According to VI, 33 of
Euclid’s Elements angles of 4(ABG) on the circumference are proportional
to the arcs they subtend, and therefore ∠B = 4∠A while ∠G = 2∠A. Thus,
the construction is reduced to the problem of constructing a triangle whose
angles are in the ratio 4:2:1.” [03], 79-80. (See figure below.)
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Second Reduction: From Triangle to Division of Line Segment
Now suppose ABG is a triangle so that ∠B = 2∠G = 4∠A. Extend
BG in both directions to points D and E so that DG = GA and EB =
BA. Complete the triangle 4(AED). Now, let ∠A = ∠BAG, ∠B =
∠ABG, and ∠G = ∠BGA. Notice that ∠G is an exterior angle of the isosce-
les triangle ABD, where AG = GD. So, ∠G = ∠DAG+∠D = 2∠D. Since
we know ∠G = 2∠A, we now know that ∠A = ∠D. Now, notice that ∠B
is an exterior angle of the isosceles triangle ABE, so ∠B = 2∠BAE. We
already know that ∠B = 2∠G, so ∠BAE = ∠G [03], 80-1. (See figure
below.)

Now that we know ∠A = ∠D, we know that4(ABG) ∼ 4(DBA). Since
we just established that ∠BAE = ∠G, we know that 4(AEB) ∼ 4(GEA).



CHAPTER 2. GEOMETRY 25

So, DB/BA = AB/BG and GE/AE = AE/BE. Thus,

BA2 = DB ·BG and EA2 = GE · EB.

Now, since AB = BE, ∠E = ∠BAE = ∠G, so we have EA = AG = GD.
Thus, these equalities become

GE · EB = GD2 and DB ·BG = BE2.

So, Abu Sahl reduces the construction to the division of a straight line ED
at two points B, G so that these equalities hold true [03], 80-1.

Third Reduction: From Divided Line Segment to Conic Sections
Now suppose that we have a line segment ED with points B, G so that

GE · EB = GD2 and DB ·BG = BE2.

Draw a line ABZ perpendicular to ED with AB = BG and BZ = GD, and
complete the rectangle BZTE. Then we have ZA ·AB = DB ·BG = BE2.
(See figure below)

Since AB = BG and BE = TZ, this leads to the equality ZA · BG =
TZ2. This means that the point T lies on a parabola whose vertex is A and
whose parameter is BG.

Further, we have GE · EB = GD2 and we know GD = BZ = ET , so
we get the equality GE · EB = ET 2, which says that the point T lies on a
hyperbola with vertex B whose transverse side and parameter are both equal
to the segment BG [03], 81-2.
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Synthesis Thus, Abu Sahl reduced the divided line segment to the con-
struction of two conic sections. Using synthesis, he puts the steps back in
order to begin with conics and end with a regular heptagon: First, create
two conics with intersection point T , which determines the lengths of ET
and TZ. These produce the segments GD = ET and EB = TZ with the
property that the line EBGD is divided at B and G so that

GE · EB = GD2 and DB ·BG = BE2.

Thus, givenBG, we can construct the line segment EBGD, then the4(ABG),
and finally our regular heptagon.

Abu Sahl was the first to note that given a class of curves beyond a straight
line and a circle (the class of conic sections), it was possible to construct
in any circle the side of a regular heptagon. His proof showed that the con-
struction of a regular heptagon belonged to an intermediate class of problems
which had no previous solution and which required at times cubic curves.
Abu Sahl limited both the level of difficulty of the problem and the means to
solve it, placing the problem within the context of the known mathematical
theory of conic sections [03], 82.

2.2 Ibrahim ibn Sinan

Ibrahim ibn Sinan (d. 946) is the grandson of Thabit ibn Qurra, the famous
mathematician and translator of Archimedes. His treatment of the area of a
segment of a parabola is the “simplest that has come down to us from the
period prior to the Renaissance” [03], 87. He wrote that he invented the
proof out of necessity, to save his family’s scientific reputation after hearing
accusations that his grandfather’s method was “too long-winded” [03], 87. He
also was concerned with methods and theories over particular problems, as
seen in his treatise On the Method of Analysis and Synthesis in Geometrical
Problems. His work On Drawing the Three Conic Sections is a discussion,
with proofs, of how to draw the parabola and ellipse. He also gave three
methods for drawing the hyperbola, which may be because of the interest in
the hyperbola by instrument-makers.

On the Parabola Ibn Sinan describes the following method for drawing
a parabola [03], 87-8. First, draw a line AG. Create a fixed segment AB on
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AG and construct BE perpendicular to AB. On BG, pick as many points
H,D,Z, . . . as you wish. Starting with the point H, create a semicircle with
diameter AH, and let the perpendicular BE intersect it at T . Through T
create a line parallel to AB and through H draw a line parallel to BE. These
lines intersect at K.

Now, draw a semicircle with diameter AD, and let this intersect BE at
I. Following the same procedure as above, draw a line through I parallel
to AG and a line through D parallel to BE. Let these lines intersect at
L. Follow the same construction method for the remaining points Z, . . .
to obtain the corresponding intersection points M, . . . . Then these points
B, K, L, M, . . . lie on the parabola with vertex B, axis BG, and parameter
AB. Create K ′, L′,M ′, . . . on the extensions of the lines KH,LD,MZ, . . . ,
respectively, so that KH = HK ′, LD = DL′,MZ = ZM ′, . . . . Then these
points K ′, L′,M ′, . . . also lie on the parabola. (See figure below.)

Ibn Sinan also proves that K is on the parabola. He assumes that the
parabola does not pass through K, which means that it must pass through
another point N on KH. Then, NH2 = AB · BH, by the property of
the parabola. However, since TB is perpendicular to the diameter of the
semicircle ATH, he points out that TB2 = AB ·BH, by a rule from Euclid’s
Elements. Further, he has constructed TBHK to be a parallelogram, so
TB = KH. So, KH2 = TB2 = AB · GB = NH2 which means that
KH = NH and K = N , which contradicts his first assumption. Therefore,
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K lies on the parabola. Ibn Sinan applies the same proof to L,M, . . . to prove
the validity of his parabolic construction [03], 88. This method shows the
ability of Ibn Sinan and Muslim mathematicians to construct a proof in the
style of the Greeks (as a proof by contradiction originated with the Greek
mathematicians), as well as their contributions to geometry by providing
more concise geometrical constructions and proofs.

2.3 Geometrical Designs

One of the most impressive parts of Islamic culture has always been the elab-
orate geometrical artwork showcased in wood, tile, paintings, and mosaics.
As geometers recognized this tradition, as well as the geometrical problems
artists solved, they began to “justify the procedures and to see how far var-
ious methods could be pushed” [03], 89. The eighth book of Pappos of
Alexandria’s Mathematical Collection deals with instruments and machines
of craft artisans, and includes an interesting section on geometrical construc-
tions that can be created with only a straightedge and a compass with one
fixed opening, sometimes referred to as a “rusty compass” [03], 89-90. This
text, and especially the eighth book, was translated into Arabic and copied
numerous times, pointing to its wide influence in the Islamic empire.

Abu Nasr al-Farabi Another text on geometrical constructions is one by
Abu Nasr al-Farabi (870-950 CE). He taught philosophy in both Baghdad
and Apello (in northern Syria), and was killed by highway robbers outside
Damascus in 950 CE. He wrote a treatise called A Book of Spiritual Crafts
and Natural Secrets in the Details of Geometrical Figures, which was later
incorporated into Abu’l-Wafa’s work On Those Parts of Geometry Needed
by Craftsmen. Translations of several problems from this treatise are shown
here, taken from the excerpts provided in [03], 90-2.

2.3.1 Problem 1

“To construct at the endpoint A of a segment AB a perpendicular to that
segment, without prolonging the segment beyond A. [See figure below.]

Procedure. On AB mark off with the compass segment AC, and, with
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the same opening, draw circles centered at A and C, which meet at D. Ex-
tend CD beyond D to E so that ED = DC. Then ∠CAE is a right angle.

Proof. The circle that passes through E,A,C has D as a center since
DC = DA = DE. Thus EC is a diameter of that circle and therefore
∠EAC is an angle in a semicircle and hence is a right angle” [03], 92.

2.3.2 Problem 2

“To divide a line segment into any number of equal parts [– for example,
three equal parts. (See figure below.)]

Procedure. Let it be required to divide the line segment AB into the
[three] equal parts AG = GD = DB. At both endpoints erect perpendicu-
lars AE, BZ in different directions and on them measure off equal segments
AH = HE = BT = TZ. Join H to Z and E to T by straight lines which
cut AB at G,D respectively. Then AG = GD = DB.

Proof. Indeed, AHG and BTD are two right triangles with equal angles
at G and D (and therefore at H and T ). In addition HA = BT . Thus
the triangles are congruent and so AG = BD. Also the parallelism of HG
and ED implies that the two triangles AHG and AED are similar, and thus
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DG/GA = EH/HA. But, EH = HA and so DG = GA” [03], 92-3. This
proof by similarity is obvious from the picture below.

2.3.3 Problem 3

“To construct a square in a given circle. [See figure below.]

Procedure. Locate the center S and draw a diameter ASG. With compass
opening equal to the radius, mark off arcs ÂZ, ÂE, ĜT , and ĜH and draw
the lines ZE and TH, which cut the diameter at I and K. Draw ZK and
TI, which intersect at M , and then draw the diameter through S, M . Let
it meet with the circle at D and B. Then ADGB will be a square.

Proof. Since ẐA = ÂE, the diameter GA bisects the arc ẐE and there-
fore GA is perpendicular to ZE, the chord of that arc. Similarly GA is
perpendicular to TH, and so ∠TKI and ∠ZIK are right. Since TH and
ZE are chords of equal arcs they are equal and therefore their halves, TK
and ZI, are equal, and since they are also parallel (both being perpendicular
to GA) the figure TKIZ is a rectangle. Its diagonals ZK and TI therefore
are equal and bisect each other, and so MK = MI, i.e. 4(MKI) is isosceles.
Since the equal chords ZE and TH are equidistant from the center (Euclid
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III, 14), KS = SI, and so in the isosceles triangle MKI the line MS bisects
the side KI and is therefore perpendicular to the side. Thus the diameter
DB is perpendicular to the diameter GA and ADGB is a square” [03], 93-4.

Conclusion Thus, the Islamic art of geometrical design led to an expansion
of geometry proofs and constructions. The proofs provided here, excerpted
from the treatise On Those Parts of Geometry Needed by Craftsmen, show
that Muslim mathematicians were very concerned with the practical aspects
of their work. In this, Abu l’Wafa, Abu Nasr al-Farabi, Ibn Sinan, and Abu
Sahl were similar to al-Khwarizmi, who wrote his Algebra for the practi-
cal applications regarding legacies. Islamic geometry continued to provide
proofs, and also constructed more concise proofs than those contained in
Greek manuscripts. However, their geometry was restricted, with the excep-
tion of conic sections, to a flat surface.
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Culture

An understanding of the medieval Muslim mathematicians requires an un-
derstanding of the Arab and Islamic culture in which they lived and worked.
Though an accurate and thorough study of a civilization cannot, of course,
be completed in a few pages, this section will share a bit of the civilization
so Islamic mathematics can be better understood.

3.1 Muhammad

Muhammad was born in Mecca around 570 CE. He was the son of Abdallah,
a merchant, and Aminah. His father died a few months before his birth,
and his mother passed away when he was six years old. Muhammad was
raised by his paternal grandfather, Abd Al-Muttalib, and by his uncle Abu
Talib. Muhammad became a merchant for a wealthy widow Khadijah, who
promoted him to the position of managing her trading caravans. Khadijah
later proposed to Muhammad, who accepted. Muhammad remained in a
monogamous relationship until after Khadijah’s death, and often spoke of
his great love for her and her support of him. Khadijah was also the first
contemporary Muslim, converting after Muhammad’s first revelation. She is
given credit for reassuring Muhammad of his role as a Prophet of God.

Muhammad began preaching Islam, which means “submission” [to God]. His
main message was one of monotheism, though the Qur’an provided guidelines
for worship of God in all areas of life. Islam is the completion of Christianity
and Judaism, and Muhammad is the final and universal Prophet sent by

32
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God to all peoples (the Seal of the Prophets). Mecca, Muhammad’s home
town where he began preaching Islam, had an economy greatly based on the
pilgrims who visited the Kaba, which held hundreds of statues of local gods
and goddesses. His message of monotheism, then, was seen as dangerous to
the economy. Muhammad and his followers were forced to flee to Medina,
who had offered him a job as a city mediator. This flight is called the hijra.

In Medina, Muhammad set up an Islamic city, where laws conformed to
the regulations set forth in the Qu’ran. He and his followers also conquered
Mecca a few years after the hijra; the capture of Mecca was a blood-less
battle, though both Meccans and Medinians suffered heavy losses in bat-
tles before this final capture. Shortly after returning to Mecca, Muhammad
passed away. He had not designated anyone to succeed him, which resulted
in crisis and opposition political camps.

3.2 The Caliphate

After many political battles, Abu Bakr became the leader of the Muslim
community. He was in power from 632-635 CE, and is the first of the four
“Rightly-Guided Caliphs.” Under Abu Bakr, the Muslim community began
its expansion, entering Palestine, Transjordania, and Syria. After his death,
Omar Al-Khattab became Caliph, ruling from 634-644 CE. Under his com-
mand, the Islamic empire expanded to include Egypt and parts of North
Africa. They conquered all Roman dominions outside of Europe as well as
the Sassanian Empire. When Omar Al-Khattab passed away, Othman ibn
Affin became Caliph, ruling from 644-656 CE. His Caliphate was marked
by further development and expansion of the Islamic world, which was con-
tinued by the fourth “Rightly-Guided Caliph,” Ali ibn Abu Talib, who was
Muhammad’s cousin and son-in-law. He ruled from 656-661 CE.

The Umayyad Caliphate There were many political and religious dis-
agreements between Ali and the Umayyad governor of Syria, Muawiyah ibn
Abu Sufyan [01], 21-2. Muawiyah was named Caliph in 661 CE, and he
ruled until 680 CE. The dynasty he founded, the Umayyad dynasty, ruled
the Muslim world for ninety years. It was under Muawiyah that the capital
of the Muslim empire became Damascus, and it is thanks to his rule that
the Muslim society was consolidated. He developed a stable, well-organized
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state, which favored peaceful measures above all else. The next important
caliph was Abd-al-Malik (ruled 685-705 CE) [01], 21-2. With Abd-al-Malik’s
reign, and the rule of his four sons who succeeded him, the Islamic world
reached its greatest expansion. During this period, the language was offi-
cially declared to be Arabic by al-Walid (r. 705-15 CE), which consolidated
a multitude of languages into a single, unifying language. From this, the
translation of different scientific materials began [01], 22. However, in 747
CE, the Abbasids revolted against the Umayyad Caliphate.

The Abbasid Caliphate The Abbasid empire focused on an international
identity. The capital was moved to Baghdad, which became the center for
learning in the Muslim empire. Scholars from Syria, Iran, and Mesopotamia
were brought to Baghdad in the late 8th century, which included Jewish and
Christian scholars. The Caliph al-Mansur (r. 775-785 CE) began funding
the study and translation of mathematical texts. It was in 766 CE that the
Sinhind, the first mathematical treatise from India, was brought to Baghdad.
This work is called the Sinhind in Arabic, but may refer to the Brahmasphuta
Siddhanta, which was influential in the development of Algebra. This text
was translated in 775 CE. Ptolemy’s astrological Tetrabiblos was translated
from Greek into Arabic in 780 CE [05], 254. The Abbasid Caliph Harun
Al-Rashid (r. 786-809 CE) began a more rigorous translation of classical
mathematics in Greek and Sanskrit to Arabic, and it was during his reign that
a very few parts of Euclid’s Elements were translated into Arabic. Al-Rashid
also established the Bayt al-Hikma, or the House of Wisdom, in Baghdad.
The Abassid Caliphate reigned until 1258 CE, when it was destroyed by the
invading Mongols.

House of Wisdom The House of Wisdom flourished under the reign of
Al-Rashid’s son, al-Ma’mun. The House of Wisdom was primarily involved
with the translation of philosophical and scientific works from Greek origi-
nals; Caliph al-Ma’mun is said to have had a dream in which Aristotle ap-
peared to him, after which al-Ma’mun resolved to have Arabic translations
of all the Greek works he could acquire [05], 255. It is during this period
that Ptolemy’s Almagest and a complete version of Euclid’s Elements were
translated into Arabic. According to tradition, Greek originals were brought
to Baghdad by a delegation sent by Caliph al-Ma’mun to the country of
Rome, referring to the Byzantine Empire. (The capital of the Byzantine
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Empire, Constantinople, was known as “Second-Rome.”) Greek manuscripts
were obtained through treaties with the Byzantine Empire, with which the
Islamic Empire had an uneasy peace. Among the famous mathematicians
employed at the House of Wisdom was al-Khwarizmi. In addition to “com-
piling the oldest astronomical tables, al-Khwarizmi composed the oldest work
on arithmetic and the oldest work on algebra. These were translated into
Latin [in the 12th century] and used until the sixteenth century as the prin-
cipal mathematical textbooks by European universities” [01], 23-4. His work
also introduced algebra, both the mathematical subject and the word, and
Arabic-Indian numerals to Europeans.

3.3 Muslims in Europe

Spain Around 750 CE, the Umayyad dynasty in Damascus was overthrown
by the ’Abbasid family. Among those of the Umayyad family who escaped
was Abd-al-Rahman; al-Rahman went to Spain and fought to maintain the
Umayyad dynasty in the West, though it was destroyed in the East. He
also made Cordova into a center of world culture; through his efforts and
the efforts of his two successors, Cordova became the most cultured city in
Europe. Al-Hakam (r. 961-976 CE), successor to Abd-al-Rahman III, was a
great patron of scholars and learning. He “granted lavish subsidies to scholars
and established twenty-seven free schools in the capital” [01], 24-5. Under his
patronage, the University of Cordova became a place of pre-eminence among
world educational institutions. Its students, both Christians and Muslims,
came from not only Spain but also other parts of Europe, Africa, and Asia
[01], 25.

Sicily The only other area Muslims held power in Europe was in Sicily. The
Muslim conquest of Sicily began with periodic raids in 652 CE, but was not
completed in 827 CE. Sicily was transformed into a province of the Muslim
world with Palermo as its capital, under the rule of Muslim chieftains, for the
next 189 years. “By being at the meeting point of two cultural areas, Sicily
became a medium for transmitting ancient and medieval culture” [01], 25. Its
population included Greek elements, Arab elements, and a group of scholars
who used Latin. All three languages were used in official registers and royal
charters, as well as in the general population of Palermo. The translation
of Greek writings dealing with astronomy and mathematics occurred here,
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as well as being translated in Toledo in Spain. Sicily and Italy were very
important the spread of Greek mathematics in the Islamic Empire and the
spread of Greek and Islamic mathematics to greater Western Europe.

3.4 Mathematics and Culture

The mathematics which was absorbed by Muslim scholars came from three
primary traditions: Greek mathematics, Hindu mathematics, and practi-
tioners of mathematics. Greek mathematics includes the geometrical classics
of Euclid, Apollonius, and Archimedes, as well as the numerical solutions
of indeterminate problems in Diophantus’ Arithmetica. It also includes the
practical manuals of Heron. The second tradition, Hindu mathematics, in-
cludes their arithmetic system based on nine signs and a dot for an empty
space, as well as their algebraic methods, an emerging trigonometry, meth-
ods in solid geometry, and solutions of problems in astronomy. The third
tradition, “mathematics of practitioners,” includes the practical mathemat-
ics of surveyors, builders, artisans in geometrical design, merchants, and tax
and treasury officials. This mathematics was part of an oral tradition which
“transcended ethnic divisions and was a common heritage of many of the
lands incorporated into the Islamic world” [04], 516.

Medieval Islamic mathematics not only reflected these three sources but also
gave a primary importance to the Muslim society that sustained it. This can
be seen in al-Khwarizmi’s application of his algebra to the Islamic inheritance
laws [04], 518. Islamic mathematics in the eighth through the thirteenth cen-
turies was marked with a steady development in conic theory in geometry,
methods and theories of solving general geometrical problems, treatment and
definitions of irrational magnitudes, trigonometry, algebra, and the geomet-
rical analysis of algebra. One important aspect of Islamic mathematics, in
contrast to Greek mathematics, is the close relationship between theory and
practice. For example, mathematical works discuss solutions to problems
which arise when creating modules for use in Islamic tessellations, relating
to the Islamic architectural decorative designs [04], 519. Mathematicians
took into account the objections of artisans to their theoretical methods,
and artisans also learned to understand the differences between exact and
approximate methods.
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Another example is the mathematical instrument, the astrolabe. It used
“the circle-preserving property of stereographic projection to create an ana-
log computer to solve problems of spherical astronomy and trigonometry”
[04], 519. This is a good example of the intersections of mathematical tradi-
tions and Islamic culture, as the astrolabe was a Greek invention but Muslims
added circles indicating azimuths on the horizon, which proved useful in de-
termining the direction of Mecca. However, the construction of these circles
was not just for religious purposes, but instead stimulated geometrical inves-
tigations [04], 519. Mathematics blended together with Islamic culture in a
way that is quite distinct from any of the three mathematical traditions from
which Muslim mathematicians acquired their knowledge.

3.5 Summary

The Qur’an and hadith, stories about the life of Muhammad, indicate that
the religion of Islam aspired to expand to a major political system as well
as assuming its role as a universal faith. For example, Muhammad sent
emissaries to the King of Ethiopia and the rules of Iran and the Byzantine
Empire, inviting them to convert to Islam. It is this aspiration which led
to the expansion of Muslim economic, political, and religious influence over
such a large territory in so short a time. Islam was meant to bring the world
under “one system of religion, one form of government, and one way of life”
[01], 27. However, the Islamic Empire was overtaken by the Mongols, and
then by the Ottoman Turkish Empire, and then by colonial Western powers.
Today, the parts of the world that were once part of the Islamic Empire still
identify with the Islamic religion and guides for legal structures; however,
each country implements these differently, and there is no longer the same
rapid development in mathematics in the Eastern world that was seen in the
Islamic medieval period.



Chapter 4

Conclusions

Throughout my paper, I have touched on all of the preliminary questions
with which I began my study; however, it is convenient to discuss these
questions and my conclusions in a separate section. The first observation
that needs to be made is the surprising amount of Islamic mathematics which
is relevant to contemporary studies, but is not part of any mathematical
course. This is vastly apparent even with my three questions that I set
out to answer; many of my presuppositions and assumptions were wrong,
which made the questions themselves invalid. It is astounding how much
historical mathematics is omitted from mathematical courses, which could
greatly benefit from the inclusion of even a small amount of this material. In
many cases, my understanding of modern mathematics, especially algebra,
was enhanced by my study of Islamic mathematics; the historical overview
gave insights to modern notation and modern methods of problem-solving.

4.1 On Transmission

I began my study hoping to study the transmission of Greek mathematics
through the Islamic Empire to Western Europe. Though I have discussed
this throughout my paper, it seems fitting to include a brief summary of the
transmission. Greek mathematical and philosophical treatises were brought
to the Byzantine Empire before the advent of Islam and the Islamic Empire.
In the early stages of the Islamic world, there was a great deal of political un-
rest, both inside the Empire and with outside forces. As the Islamic Empire
expanded, it faced the difficulty of uniting all of the people of such a large ter-
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ritory. It really was not until the Abassid Caliphate when the Empire began
to stabilize, when it had reached the peak of its expansion, that the Islamic
world was able to concentrate resources on centers of learning and culture
rather than on internal cohesion and external expansion. The Abassid Caliph
al-Rashid founded the House of Wisdom in Baghdad, where he summoned
scholars of all nationalities and religions. These scholars were engaged in
translating and writing treatises on mathematical and philosophical topics.
This institute formed the basis of Islamic mathematical development. It was
under the Abassid Caliph al-Ma’mun that the House of Baghdad began to
flourish. Al-Ma’mun actively sought out classic Greek treatises for transla-
tion into Arabic, and treaties with the Byzantine Empire brought most of
the Greek mathematical and philosophical works to Baghdad for translation.

These Greek translation and original Arab treatises reached Western Eu-
rope in a number of ways. First, al-Andalus, the Arab name for the Iberian
Peninsula, was ruled by the Umayyid Caliphate (in exhile). The Umayyid
rulers established many Universities and made Cordova into an important
cultured city. Though the Umayyids and Abassids had a very uneasy peace,
Abassid caliphs seem to have been willing to send copies of their Greek and
Arabic texts to the universities at Cordova. Al-Andalus was thus a resource
for Western contacts to receive Greek and Arab mathematical treatises.

The second route of transmission was through Italy. Not only was a Muslim
presence established through trade routes in Italy and to the Muslim world,
but Muslims had a firm presence in Sicily, where scholars of Greek, Arabic,
and Latin came together to translate and study mathematical texts. Sicily
had a good relationship with Baghdad, and thus Italy became an vital link
in the transmission of Greek and Islamic mathematics to Western Europe.

The last route of transmission was through trade routes and Western travel-
ers to the Arab world. As already stated, some of these trade routes linked
Italy, and scholars like Fibonacci, with Islamic mathematics. Other travel
and trade routes, however, linked the rest of Western Europe to the Islamic
Empire. Travelers and merchants were able to access and buy copies of Greek
and Arab treatises translated to or written in Arabic. These texts were then
brought back to Europe, where they were distributed to university scholars
or monarchs. And so, over centuries, Greek mathematics was transmitted
through the Islamic Empire to Western Europe.
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4.2 On Geometry

I began this paper with the question: “Why was the geometry of Euclid
transmitted verbatim while algebra was created and innovated by Muslim
mathematicians? In other words, why was geometry not developed while
algebra was both created and developed?”

As my research shows, the question itself is not correct. Geometry was de-
veloped and added to by Muslim mathematicians, though I began my study
without knowing this. Still, geometry only developed so far, and usually
developed in conjunction with algebra, so the topic remains one of interest
and can still be discussed.

As I have discussed, Euclid’s The Elements, Archimedes’ On the Sphere and
Cylinder, and Apollonios of Perga’s The Conics were of utmost importance
to Muslim geometers. The Muslim mathematicians can be credited with
transmitting Euclid’s geometry verbatim, as they were very conscientious
about their translations and the dispersion of their translations meant that
a very faithful copy Euclid’s Elements was transmitted to Western Europe.
The translations of Archimedes and Apollonios show the same concern for
the exactness of the translation; the Muslim mathematicians were successful
in transmitting Euclid, Archimedes, and Apollonios to Western Europe in
verbatim forms. However, Muslim mathematicians were also successful in
developing geometry.

Abu Sahl’s explanation of the construction of a regular heptagon shows his
innovation as a geometer and his contribution to Islamic mathematics by
providing solutions to “impossible” problems within known mathematical
theories. Though Archimedes provided a construction of a regular heptagon
inside a circle, his construction was not proven and so was more of a proof
of the existence of a regular heptagon inside a circle rather than a valid con-
struction. Abu Sahl was able to construct and prove the ‘impossible” by
reducing the problem to the construction of two conic sections. By doing
this, Abu Sahl showed that the construction of a regular heptagon belonged
to an intermediate class of problems which required at times the use of cubic
curves. Abu Sahl was able to reduce a problem into a method which was
already accepted, that of conic surfaces, to provide a general solution for
the regular heptagon problem. Further, the geometry of Ibrahim ibn Sinan
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shows the Muslim importance of concise proofs and constructions, and he
improved upon the methods of the Greeks in drawing the parabola, ellipse,
and hyperbola. The extension of geometry into practical spheres was also
a development which was not seen in Greek mathematics. The existence
of many treatises on the problems facing artisans as they constructed their
geometrical artwork shows the intersection between theory and practice in
Islamic geometry, and in all Islamic mathematics.

Geometry may not have developed to our modern form, or to 3-dimensional
geometry beyond conic sections because of the environment in which Muslim
geometers worked. In Islam, it is prohibited to make likenesses of people,
and so Muslim artists developed geometrical design over attempting to draw
people and objects in 3-dimensions. It is this drawing in 3-d which may
have sparked the Western European geometrical development; therefore, the
Islamic culture in the House of Wisdom precluded the further development
of geometry past the point already discussed.

4.3 On Theorems and Proofs

Another question with which I began my study was the following: “Why
didn’t the Persian mathematicians expand or invent new theorems or proofs,
though they preserved the definition-theorem-proof model for geometry? In
addition, why did the definition-theorem-proof model not carry over from
Greek mathematics (such as geometry) to algebra?”

This question was also misinformed from the beginning. Though al-Khwarizmi
did not adopt Euclid’s “definition-theorem-proof” model, later algebraic trea-
tises do so. Al-Khwarizmi still recognizes the importance of proving all as-
sertions, though he did not structure his theorem-proofs in exactly the same
way that Euclid’s Elements or other Greek mathematical treatises do. Still,
the topic can be discussed even if the question was originally misstated.

Al-Khwarizmi did not, as I had previously assumed, have access to most
Greek mathematical treatises. In fact, al-Khwarizmi only had access to a very
few parts of Euclid’s Elements. His college Thibet ibn Qurra was engaged
in the translation of many Greek treatises during and after al-Khwarizmi’s
publication of Algebra, so al-Khwarizmi must have relied on Hindu and local
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Syriac-Persian sources for his studies. Al-Khwarizmi did not have access to
Greek manuscripts, as seen in his proof of a2 + b2 = c2 which is only valid in
the case when a = b. Euclid’s Elements provides a more rigorous proof which
holds for all cases; if al-Khwarizmi had access to this text, he surely would
have recognized this and included Euclid’s proof, as he included the proofs
from Hindu texts of other theorems, such as how to take a square root, when
the Hindu proofs surpassed his own. In this case, then, it is an easy answer
regarding why the definition-theorem-proof model was not carried over from
Euclid to algebra; the founder of algebra was not aware of the existence of
the definition-theorem-proof model.

The study of Islamic mathematics, both geometry and algebra, have shown
that the definition-theorem-proof model was commonly used after the Greek
treatises, and therefore the Greek definition-theorem-proof-model, were avail-
able to Muslim mathematics. For example, this can be seen in the proofs of
Ibn Sinan (discussed in an earlier chapter), who followed this model when dis-
cussing the area of a segment of a parabola, or in the discussion of x3+mx = n
by Umar al-Khayyami (1048-1122 CE), which includes a theorem, solution,
and proof. It is clear that though it was not considered necessary, most
Muslim mathematical treatises included some form of the definition-theorem-
proof model that they admired so much in Euclid’s Elements and other Greek
texts.

4.4 On Religion

The final question I asked before I began this study was the following: “Why
were most of the leading mathematicians, in this time period, Muslim? In-
cluding, why were there no Jewish mathematicians? Why were there no
Orthodox or Arab Christian mathematicians?”

This question, too, is flawed; there were Jewish and Christian mathemati-
cians at the House of Wisdom in Baghdad. However, they were employed
mainly as translators, as they knew either Hebrew and Arabic or Greek and
Arabic. The discussion of this question requires a brief look at the status of
Jews and Christians within the Islamic Empire.

The Qur’an accords Jews and Christians the status of “People of the Book.”
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Under Islamic law, then, Jews and Christians are given protected status as
“dhimmi”. As dhimmi, Jews and Christians are given the freedom to practice
their own religion, with the condition that they may not attempt to convert
Muslims to their religion, as long as they pay a special tax to the Islamic
government. Though this afforded them a protective status, Jews and Chris-
tians were thus second-rate citizens; they did not have equal benefits under
the law or in court. Further, many Muslims and Islamic governments wished
for their second-class status to be reflected in their standard of living and
their political and societal prominence.

This may help account for the position of Jewish and Christian mathemati-
cians. Though employed as translators by al-Rashid and al-Ma’mun, these
scholars were not seen as equals of Muslim scholars at the House of Wisdom.
The formation of Islamic theology was also happening during this period,
and many Jews and Christians gained prominence from their positions as
religious authorities; they were asked to account for their religion before the
Caliph, Islamic theologians, and Islamic legal analysts. However, it seem that
it was not recognized that Arab Jews and Arab Christians could be experts in
intellectual fields besides religion; at least, it was thought that Muslim schol-
ars could perform just as well in all intellectual fields besides religion, where
the caliphs were fair enough to let Jews and Christians speak for themselves.
This bias may be recognized in the financial support given by the Caliph
to specific Muslim mathematicians to allow them to write original treatises.
The caliphs may have been willing to pay Arab Jews and Arab Christians for
their translation works, but seemed to favor Muslim mathematicians when
requesting original mathematical treatises.
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Appendix I

5.1 Introduction

As a study of the transmission of Greek mathematics through the Muslim
world, it is fitting to attach a brief look at the evolution of Algebra to con-
temporary methods, culminating in the Fundamental Theorem of Algebra.
Tracing the evolution of algebra through the Fundamental Theorem of Alge-
bra shows the influence Arab mathematicians have had on modern algebra.

5.2 Algebra in the European Middle Ages

5.2.1 Leonardo of Pisa, or Fibonacci

The first European algebraic advances occurred in the “early Renaissance,”
in the 13th century, beginning with Leonardo of Pisa, or Fibonacci. Leonardo
was lived circa 1180 - 1240 CE. Though born in Pisa, Leonardo was raised
in Bugia, where he learned about commerce and arithmetic. After traveling
to Egypt, Syria, and Provenece, and learning methods of calculation. He
concluded that the decimal positional system (the Indian numbering system)
was superior to all other numbering systems [09], 36. He returned to Pisa,
studied Euclid’s Elements, and wrote Book of the Abacus with information
about arithmetic, algebra, and geometry. It was in this book that Leonardo
introduced the famous Fibonacci sequence:

1 + 1 + 2 + 3 + 5 + 8 + 13 + ...
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where
an+1 = an + an−1

He also wrote Flower and Book of Squares, in which he solved the cubic
equation

x3 + 2x2 + 10x = 20

and found a rational solution of the generalized system

x2 + a = u2

x2 − a = v2

Leonardo notes that for this system to be solvable over the integers, with
x, u, v a triple of pairwise coprime integers, a must be of the form 4kl(k +
l)(k − l). He calls this a congruum, which is four times the area of a right
triangle with legs 2kl and k2 − l2. Leonardo points out that a congruum
cannot be a square, which implies Fermat’s Last Theorem for n = 4, or the
unsolvability of the equation

x4 + y4 = z4

So, Leonardo formulated Fermat’s Last Theorem for the case n = 4 about
four hundred years before Fermat. However, Leonardo’s proposed proof does
contain an error [02], 56-7.

5.2.2 Algebraic Symbolism

For almost 300 years, no European mathematician emerged who could un-
derstand or expand upon Leonardo of Pisa’s work. The second half of the
15th century, or the Renaissance, is when a revival of algebraic investigations
began. Two events, the fall of Constantinople in 1453 and the invention of
the printing press, contributed to this revival.

German mathematicians were helpful in the development of algebraic sym-
bolism. Johannes Widman (ca. 1462-1498 CE) first introduced our signs
of + and − in his book A Quick and Beautiful Method of Calculation for
all Merchants. Adam Reis (1492-1559 CE) then wrote Coss, which used the
following symbols: [02], 64
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x0 ø “number”
x1 r “root, thing”
x2 z “square”
x3 c “cube”
x4 zz “square-square”
x5 β “deaf solid”
x6 zc “square-cube”
x7 biβ “second deaf solid”
x8 zzz “square-square-square”
x9 cc “cube-cube”

German mathematicians clearly recognized a need for uniform symbolic no-
tations.

Nicolas Chuquet (died ca. 1500) introduced the zeroth power for the un-
known and negative powers of the unknown. He would write 123 for 12x3,
and so an equation we may write as “5x3 · 3x−1 = 15x2,” Chuquet would
write as “53 multiplied by 31·m̃ yields 152” [02], 65.

The development of a uniform algebraic notation contributed to the first
real advances in European algebra, which were connected with the solution
of cubic and quartic equations.

5.3 European Algebraic Achievements

During the Renaissance (the 15th and 16th centuries), the countries of Italy,
Spain, France, and England led the resurgence of art, science, and literature.
The 16th century began the age of European algebra with the solution of
cubic and quartic equations.

5.3.1 Cubic Equations

Scipione del Ferro (1456-1526 CE) solved the equation

x3 + px = q p, q>0

but kept his results secret; this was common at the time, as “the owner of
a method could challenge his rival to a scientific duel and set him problems
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solvable by the method the rival was ignorant of. Victory in such a ‘tour-
nament’ brought one fame and placed one at an advantage when it came to
filling a desirable position” [02], 68. Del Ferro only passed his method to his
student, Fiore, who challenged Niccolo Tartaglia (ca. 1499-1557 CE) to a
duel.

Niccolo Tartaglia’s story is interesting. He was born into a poor family
in Brescia, and his father passed away when Tartaglia was only six years
old. When the French sacked Brescia in 1512, Tartaglia was wounded in the
jaw and larynx; his mother treated him with home remedies, since they were
too poor to consult a doctor. The name “Tartaglia” is actually a nickname
which means “stammerer”[02], 68. In spite of the challenges Tartaglia faced
in his youth, he gained a great knowledge of mathematics and mechanics,
and wrote an impressive treatise The New Science. After many attempts,
Tartaglia discovered the solution for the above equation the very night be-
fore the duel with Fiore! Tartaglia was therefore able to solve all of Fiore’s
problems, whereas Fiore could not solve the mechanics problems Tartaglia
asked him. A few days after the duel, Tartaglia also solved the equation:
[09], 55

x3 = px+ q p, q>0

Girolamo Cardano (died 1576 CE) was a “true Renaissance figure and em-
bodied the good and bad characteristics of that period” [02], 69. After finding
out that Tartaglia knew the secret solution to the cubic equation, he began
a sneaky campaign to find out the answer himself. He invited Tartaglia to
Milan from a famous man who “happened” to be out of town when Tartaglia
arrived. Tartaglia then accepted Cardano’s “hospitality” and, after Cardano
swore secrecy, Tartaglia revealed his solution to Cardano. Six years later, in
1545, Cardano published Great Art, or The Rules of Algebra, which included
Tartaglia’s solutions to the cubic equations as well as Luigi Ferrari’s solution
of the quartic equation. Though Cardano did refer to del Ferro and Tartaglia
in his first chapter, he received the credit for the solutions, which are now
named for him [02], 70.

Cardano did progress a bit further than Tartaglia in noting that the solution
for x and y such that

x+ y = 10 xy = 40
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was satisfied by
5 +
√
−15

and
5−
√
−15

if √
−15 ·

√
−15 = (−15)

However, he did not attempt to solve the cubic equation using expressions
of the form: [02], 71 √

m, m<0

5.3.2 Complex Numbers and Literal Calculus

Little is known about Rafael Bombelli (ca. 1526-1573 CE) other than the
fact that he lived in Bologna. His Algebra was influenced by the Greek Dio-
phantus. Bombelli included 143 problems with solutions from Diophantus;
Algebra introduced these problems and methods to European mathemati-
cians. In Algebra, Bombelli introduces integral powers of rational numbers,
irrational magnitudes such as square and cube roots, and introduces com-
plex numbers through a multiplication table. He calls +

√
−1 “piu di meno,”

or “plus from minus,” and −
√
−1 “meno di meno,” or “minus from minus”

[02], 72. Bombelli defines the multiplication of these numbers, and considers
other arithmetic operations such as addition of a

√
−1 ± b

√
−1 and raising

a + b
√
−1 to the second, third, and increasing powers [09], 60-1. Bombelli

was the first European who used Diophantus’ algebraic methods; he followed
Diophantus’ method in Diophantus’ introduction of negative numbers in his
own introduction of complex numbers. Bombelli then used these to solve al-
gebraic equations [02], 73. Bombelli’s complex number-systems were written
in polar form in the 18th century, and later analyzed in the 19th century.
Gauss’s construction of the arithmetic of complex numbers promoted their
adoption, since Bombelli’s complex numbers were now “genuine numbers”
[02], 74.

Francois Viète was born in Fontenay-le-Comte, and did most of his work
in mathematics while at the court of kings Henry III and Henry IV in Paris.
His contribution to mathematics cannot be understated; de Thou, a French
historian and statesman, wrote in 1625:
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Francois Viète, a native of Fontenay in Poitou, was a man of such
immense genius and of such profundity of thought that he man-
aged to reveal the innermost secrets of the most arcane sciences
and easily managed to do all that human perspicacity is capable
of. But of all the different studies that forever occupied his great
and unwearied mind, the one he primarily applied his proficiency
to was mathematics. So great was his mathematical distinction
that all that the ancients had invented in this discipline, all that
we missed as a result of the ravages of time that annihilated their
creations, all these he reinvented, reintroduced, and enriched with
much that was new. He thought so persistently that he would of-
ten spend three successive days in his study without food or sleep,
except that from time to time he would rest his head on his arm
for a brief spell of sleep to keep up his strength... [02], 75

Viète attempted to create a new science combining the geometry of the “an-
cients” with the ease of operations in algebra. In his An Introduction to the
Art of Analysis, Viète introduced the language of formulas into mathematics;
in this way, he created a literal calculus. He used literal notations of both
parameters and unknowns, which made it possible to write equations and
identities in a general form. Mathematical formulas are not just “a compact
language for recording theorems... What counts is that we can carry out
operations on formulas in a purely mechanical manner and obtain in this
way new formulas and relations” [02], 77. We can obtain these new formulas
by observing the rules of substitution, removing parenthesis, and reduction
of similar terms. Literal calculus then “relieves the imagination,” according
to Leibniz, since mechanical computations replace some reasoning by using
literal calculus [02], 77.

Viète denotes unknown magnitudes with vowels A, E, I, O, and U and known
magnitudes with consonants B, C, D, etc. He adopts the symbols + and −
for addition and subtraction, introduces the symbol = for the absolute value
of the difference of two numbers (or, |B−C| in modern notation). Viète also
uses the word “in” for multiplication and “applicare” for division. Further,
Viète introduced the rules: [09], 64-5

B − (C ±D) = B − C ∓D;B · (C ±D) = B · C ±B ·D
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shown in modern notation, as well as operations on fractions (also shown in
modern notation):

B

D
+ Z =

B + Z ·D
D

Viète’s next treatise, Ad logisticam speciosam notae priores, introduces some
of the most important algebraic formulas, such as: [02], 79

(A+B)n = An ± nAn−1B + ...±Bn, n = 2, 3, 4, 5

An +Bn = (A+B) · (An−1 − An−2B + ...±Bn−), n = 3, 5

An −Bn = (A−B) · (An−1 + An−2B + ...+Bn−1), n = 2, 3, 4, 5

Viète’s literal calculus was later perfected by Rene Descartes, who gave the
literal calculus its modern form. At the end of the 17th century, a calcu-
lus was developed for the analysis of infinitesimals; this is seen in Newton’s
method of fluxions and infinite series and Leibniz’s differential and integral
calculus. The 18th century saw the development of a calculus of partial
differentials and derivatives, and the 19th century saw the creation of a cal-
culus of logic. Today, nearly every mathematical theory has its own literal
calculus; the apparatus of formulas has become an “indispensable language
of mathematics,” and was introduced by Diophantus and Viète [02], 80.

5.3.3 Viète’s determinate equations

Viète’s literal calculus allowed for his analysis of determinate equations. His
treatise On Perfecting Equations establishes what is now known as Viète’s
Theorem: [02], 87

For xn + a1x
n−1 + ...+ an−1x+ an = 0, n = 2, 3, 4, 5

To have n solutions x1, x2, ...xn, the symmetric expressions result:

x1 + x2 + ...+ xn = −a1

x1x2 + x1x3 + ...+ xn−1xn = a2

..................................

x1x2...xn = (−1)nan
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Viète’s solution of the cubic equation x3 + 3ax = 2b is presented below
because of its implications for the Fundamental Theorem of Algebra:

x3 + 3ax = 2b

Let
a = t2 + xt = t(t+ x)

The elimination of x from these two equations yields a quadratic equation in
t3:

(t3)2 + 2bt3 = a3

Thus, cubic equations can be solved by trigonometry. Using the example
Viète used: [02], 88-9

x3 − px = q, where (
q

2
)2 < (

p

3
)

⇒ x3 − 3r2x = ar2

Since

(
ar2

2
)2 < (r2)3 ⇔ a < 2r

Let
a = 2r sin v

Then
x3 − 3r2x = ar2 ⇔ (

x

r
)3 = 3(

x

r
) + 2 sin v

Let x
r

= −y:
3y − y3 = 2 sin v

Using 3 sinϕ− 4 sin4 ϕ = sin 3ϕ, Viète obtains the equation:

3(2 sinϕ)− (2 sinϕ)3 = 2 sin 3ϕ

⇒ y1 = 2 sin
v

3
; y2 = 2 sin

v + 2π

3
;

The third root is negative. This showed that “in the ‘irreducible’ case a cubic
equation has three different real roots. Since Viète admitted only positive
roots he could not formulate this conclusion explicitly” [02], 89. Thus, Viète
showed a part of the conclusion of the Fundamental Theorem of Algebra,
though he did not formulate it in the same way as Descartes and Girard did
later.
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5.4 Algebra in the 17th, 18th centuries

The 16th century was a crucial point in the history of algebra, with the
invention of the literal calculus. The use of its own language allowed for
investigations of determinate and indeterminate equations. The domain of
numbers was extended to complex numbers, though these were not viewed as
entirely “legitimate”[02], 90. After these algebraic achievements, a period of
relative calm ensued. 17th century mathematicians were primarily engaged
in analysis of infinitesimals. However, arithmetization also occurred in the
17th and 18th centuries.

5.4.1 Descartes’ arithmetization of algebra and deter-
minate equations

Rene Descartes (1596-1650 CE) was both a philosopher and a mathemati-
cian. His Geometry was an attempt to reduce geometry to algebra, which
created analytic geometry. He transformed Viète’s calculus of magnitudes in
specifying that “operations on segments should be a faithful replica of the
operations on rational numbers” [02], 91. Instead of regarding the product of
two segments as an area, as Viète and Greek mathematicians did, Descartes
showed that the product is a segment [09], 73. He introduces a unit segment
(u) and defined the products of segments a and b as the segment c which was
the fourth proportional to the segments u, a, and b; i.e. u:a = b:c. Descartes
then made the domain of segments into a replica of the semi-field R+, estab-
lishing the isomorphism between the domain of segments and the semi-field
R+ [02], 92.

Isaac Newton (1643-1727 CE) later gave a definition of numbers which was
omitted by Descartes. Though Greek mathematicians only regarded numbers
as collections of units, like natural numbers, Ptolemy and Arab mathemati-
cians identified ratios of numbers, or the rational numbers, and ratios of like
quantities, such as real numbers, as numbers. However, European mathe-
maticians did not do so until Newton defined ratios as numbers, following in
Descartes example. Newton wrote: [02], 93

By a ‘number’ we understand not so much a multitude of units
as the abstract ratio of any quantity to another quantity which
is considered to be unity. It is threefold: integral, fractional, and
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surd. An integer is measured by unity, a fraction by a submultiple
part of unity, while a surd is incommensurable with unity.

Newton also defined negative numbers and operation rules with relative num-
bers.

Descartes also presented his properties of equations (by “equation,” Descartes
meant setting a polynomial equal to zero), which lead to the development of
the Fundamental Theorem of Algebra: [02], 93-4

1. If α is a root of an equation then its left side is algebraically
divisible by x− α;
2. An equation can have as many positive roots as it contains
changes of sign from + to −; and as many false (i.e. negative)
roots as the number of times two + signs or two − signs are found
in succession;
3. In every equation one can eliminate the second term by a
substitution; [as in completing the square in a quadratic equation]
4. The number of roots of an equation can [sic] be equal to its
degree.

Descartes also formulated assertions of cubic and quartic equations, analyzing
their constructibility by ruler and compass (assuming all its roots are real).
Descartes discovered the method of undetermined coefficients, which led to
his (cautious) formulation of the Fundamental Theorem of Algebra [02], 94.

5.4.2 The Fundamental Theorem of Algebra

Descartes first formulated the Fundamental Theorem of Algebra in the fol-
lowing way: “Every equation can have as many distinct roots (values of the
unknown quantity) as the number of dimensions of the unknown quantity
in the equation” [02], 94. Girard overcame Descartes’ reluctance to include
complex roots, and in his New Discoveries in Algebra in 1629 wrote that the
number of solutions of an algebraic equation is equal to its degree. Other
18th century mathematicians used an equivalent version of the Fundamental
Theorem: “Every polynomial

fn(x) = xn + a1x
n−1 + · · ·+ an−1x+ an
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with real coefficients can be written as a product of linear and quadratic
factors with real coefficients” [02], 95

The first proof of the Fundamental Theorem of Algebra was given by d’Alembert
in 1746, but his proof was purely analytic and was not rigorous, even com-
pared to the standards of rigor of the 18th century. Euler (1707-1783 CE)
presented his proof of the Fundamental Theorem of Algebra in 1746 as well;
Euler’s proof differed from d’Alembert’s in that Euler looked for a purely
algebraic proof. Euler reduced his non-algebraic assumptions to a minimum,
using the following two assumptions: [02], 95

I. Every equation of odd degree with real coefficients has at least
one real root.
II. Every equation of even degree with real coefficients and neg-
ative constant term has at least two real roots.

Euler formulated his proof by reducing the solution of an equation of degree
2km, m odd, to an equation of degree 2k−1m1, m1 odd. Euler noted that it
is sufficient to consider an equation Pn(x) = 0 for n = 2k; if n 6= 2k then
it is possible to find a value of k such that 2k−1 < n < 2k and multiply the
polynomial fn(x) by 2k − n factors to get a polynomial of degree 2k. Euler
therefore only proves the theorem for n = 4, 8, and 16 and for the general
case n = 2k. I will show his cases for n = 4 and n = 2k:

Consider the equation: x4 +Bx2 + Cx+D = 0 (A)

The left side can be written as the product

(x2 + ux+ λ)(x2 − ux+ µ)

Using Descartes’ method of undetermined coefficients gives the equation:

u6 + 2Bu4 + (B2 − 4D)u2 − C2 = 0

According to assumption II, this equation has at least two roots, one of which
is the value u. Euler shows that the coefficients λ and µ can be expressed in
terms of u and the coefficients in equation (A).

Euler then reaches the same conclusion from general arguments without rely-
ing on computations in order to extend his assertion to an equation of degree
2k. He uses the following (then unproved) theorems of Lagrange and Galois:
[02], 96
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Theorem 5.4.1. (Fundamental Theorem on Symmetric Functions)
Every rational symmetric function of the roots of an equation is a rational
function of its coefficients.

Theorem 5.4.2. If a rational function ϕ(x1, . . . , xn) of the roots of an equa-
tion takes on k different values under all possible permutations of the roots,
then those k values satisfy an equation of degree k whose coefficients are
rationally expressible in terms of the coefficients of the initial equation.

Following Descartes, Euler argued that to any equation of degree n we
can “attribute” n roots and write:

fn(x) = xn + a1x
n−1 + · · ·+ an−1x+ an = (x+ α1)(x+ α2) · · · (x+ αn)

where α1, α2, . . . , αn are symbols which operate as if they were ordinary
numbers. Thus, the αi are the negatives of the roots of fn and thus: [02], 96

α1 + α2 + · · ·+ αn = a1

α1α2 + α1α3 + · · ·+ αn−1αn = a2

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

α1α2 · · ·αn = an

The Fundamental Theorem of Algebra states that α1, α2, · · · , αn are real or
complex numbers.

Then Euler assumes that equation (A) has roots α, β, γ, and δ. Then, u
must be the sum of two of these four roots (so there are six possibilities for
u), and so u must satisfy an equation of degree 6. Euler writes that since
α + β + γ + δ = 0, the values of u can be: [02], 97

u1 = α + β = p u4 = γ + δ = −p

u2 = α + γ = q u5 = β + δ = −q

u3 = α + δ = r u6 = β + γ = −r

Then, the equation for u takes the form:

(u2 − p2)(u2 − q2)(u2 − r2) = 0
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This equation is an even degree and has −p2q2r2 as its constant term. To
verify that −p2q2r2 < 0, it is enough to show that pqr is real. Euler shows
that:

pqr = (α + β)(α + γ)(α + δ)

remains unchanged under all permutations of the roots, which means that
pqr is expressible in terms of the coefficients in equation (A). Thus, u can be
chosen to be real.

Euler then sketches the proof for the case n = 2k [02], 97. He writes the
polynomial

fn(x) = x2k

+Bx2k−2 + Cx2k−3 + · · · (B)

as a product of two factors of degree 2k−1 with indeterminate coefficients

(x2k−1

+ ux2k−1−1 + λx2k−1−2 + · · · )(x2k−1 − ux2k−1−1 + µx2k−1−2 + · · · )

The number of coefficients is 2k − 1 and is thus equal to the number of de-
termining relations.

Since u is the sum of 2k−1 of the total 2k roots, the number of possible

values of u is
(

2k

2k−1

)
= 2N , where N is odd. Thus, Euler concludes that

u satisfies an equation of degree 2N with real coefficients. This equation
resembles the above example, in this it must be of the form:

(u2 − p2
1)(u

2 − p2
2) · · · (u2 − p2

N) = 0

This then has a constant term p2
1 · · · p2

N , which Euler points out is negative;
thus, u can be chosen to be real. The remaining coefficients λ, µ, · · · can
be expressed rationally in terms of u and the coefficients B, C, D, · · · from
equation (B) above.

Lagrange fully accepts Euler’s proof, and his On the Form of Imaginary Roots
of Equations is a rigorous account of Euler’s reduction procedure which fills
the gaps in Euler’s proofs. Lagrange also assumes that one can “attribute”
n root symbols to an arbitrary equation of degree n and operate with them
under the usual arithmetic rules. Other 18th century mathematicians agreed;
the proofs of de Fonxenex (1759) and Laplace (1795) simplified Euler’s re-
duction procedure but “regarded his formulation of the issues as completely



CHAPTER 5. APPENDIX I 57

legitimate” [02], 98.

The first mathematician who rejected Euler’s formulation was C. F. Gauss
(1777-1855 CE) [09], 79, 95. His doctoral dissertation, written in 1799, was
devoted to the proof of the Fundamental Theorem of Algebra. In it, he wrote:
[02], 98

Since we cannot imagine forms of magnitudes other than real
and imaginary magnitudes a+ b

√
−1, it is not entirely clear how

what is to be proved differs from what is assumed as a funda-
mental proposition; but granted one could think of other forms
of magnitudes, say F, F ′, F ′′, . . . , even then one could not as-
sume without proof that every equation is satisfied either by a
real value of x, or by a value of the form a + b

√
−1, or by a

value of the form F , or of the form F ′, and so on. Therefore the
fundamental theorem can have only the following sense: every
equation can be satisfied either by a real value of the unknown,
or by an imaginary of the form a+ b

√
−1, or, possibly, by a value

of some as yet unknown form, or by a value not representable
in any form. How these magnitudes, of which we can form no
representation whatever - these shadows of shadows - are to be
added or multiplied, this cannot be stated with the kind of clarity
required in mathematics.

Gauss gave a largely algebraic proof without assuming the existence of roots
of any form in 1815 [09], 95-9. Kronecker isolated the method of Gauss in
pure form with the construction of the splitting field of a polynomial without
assuming the existence of the field of complex numbers in 1880-1881. This
may be one of the first examples of abstract algebra; however, there is no need
to detail this particular proof here, since the first proof of the Fundamental
Theorem of Algebra has already been given, and a purely algebraic proof of
the Theorem (using Galois Theory) will be provided later.

5.5 Algebra in the 19th century

Though Euler’s viewpoint was rejected at the beginning of the 19th century,
it was adopted between the 1870s and 1880s, and became the viewpoint that
triumphed in algebra over the viewpoint that presupposes the construction of
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a field of complex numbers which is then followed by a proof of the existence
of a root in the field. It is interesting to note that the Fundamental Theorem
of Algebra in Euler’s proof coincides with the Weierstrass-Frobenius theorem
which states that “the field of real numbers and the field of complex num-
bers are the only linear associative and commutative algebras (without zero
divisors) over the field of real numbers” [02], 100. Gauss remained a large
part of 19th century mathematics, as his theory of cyclotomic equations be-
came the model for the investigations of Abel, Galois, and other 19th-century
algebraists.

5.5.1 Galois Theory

Evariste Galois (1811-1832 CE) solved the problem of algebraic solutions of
equations. Galois was killed in a duel on May 30, 1832; the night before
the duel, knowing he may die, Galois wrote a letter to his friend Auguste
Chevalier setting out his fundamental results [09], 103. These dealt with the
general theory of algebraic functions and the theory of equations. It will be
helpful to give a brief overview of Galois theory, to aid in the understanding
of a pure algebraic proof of the Fundamental Theorem of Algebra, which
relies on Galois theory.

Galois theory deals with whether an equation

f(x) = xn + a1x
n−1 + · · ·+ an−1x+ an = 0 (C)

with numerical coefficients a1, a2, . . . , an, is solvable by radicals.

Galois introduces the concepts of field, which he calls “domain of rational-
ity,” and group [02], 117. He defines rational as “any quantity which can be
expressed as a rational function of the coefficients of the equation and of a
certain number of adjoined quantities arbitrarily agreed upon” [02], 117. He
also introduces the concept of a group of substitutions; “substitutions are
the passage from one permutation to another” [02], 117.

For the domain of rationality, or field, Galois uses Q(a1, . . . , an) = Q0, where
Q is the field of rational numbers. He usually adjoins to Q0 all necessary
roots of unity. For example, the equation

xp − a = 0
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becomes solvable with radicals if the radical p
√
a is adjoined to the domain

of rationality.

Galois theory shows that the splitting field K = Q0(x1, . . . , xn) of equation
(C) above is obtained by the adjunction of a single element θ : K = Q0(θ).
The element θ is the primitive element of the field K [02], 118.

The question of the solvability of equation (C) then reduces to the study
of the structure of the field K. In other words, can the field be obtained by
successive adjunction of radicals to Q (K = Q[θ1, θ2, ..., θn])? Galois reduced
the problem to the “study of the structure of a finite group, the group G of
automorphisms of the field K that leave the elements of the groundfield Q0

fixed” [02], 118. This group G has order g and consists of the permutations

θ1 → θ1, θ1 → θ2, θ1 → θg

This group G is noncommutative, and is known as the Galois group. If H is
a subgroup of G, then the elements of K invariant under the permutations
in H form a subfield L. Generally, L is not normal, or is not determined
by a normal equation. To obtain normal equations and normal subfields,
Galois realized that he must take only subgroups H such that the cosets
H, g1H, . . . , gS−1H form a group; this is called the factor group G/H. In
other words, H must be a normal subgroup of G.

Galois introduces and defines the concepts of a normal subgroup and a fac-
tor group. “If H is a normal subgroup of order h and index p and L is the
subfield of K whose elements are invariant under H, then K ⊃ L ⊃ Q0

and, as Galois shows, the degree of L over Q0 is p (the order of the fac-
tor group G/H and the degree of K over L is h (the order of H). This is
a direct generalization of Gauss’ theory of the cyclotomic equation” [02], 119.

A necessary condition for K to be obtainable from Q0 by a finite number of
extensions

Q0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ LS = K

is the existence in G of a nested sequence of normal subgroups

G ⊃ H1 ⊃ H2 ⊃ · · · ⊃ HS ⊃ E

such that the factor groups G/H1, H1/H2, . . . , HS have prime orders pi, i =
1 · · ·S respectively. Further, all of the extensions are radical extensions:
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“L1 is obtained from Q0 by adjunction of a root of the equation xp1 − a =
0, a ∈ Q0, L2 is obtained from L1 by adjunction of a root of the equation
xp2 − a1 = 0, a1 ∈ L1, and so on. Each of these equations has a cyclic Galois
group of prime order and is therefore solvable by radicals (we are assuming
that the necessary roots of unity have already been adjoined to Q0)” [02],
119-20.

To obtain a criterion for the solvability of equations by radicals, Galois con-
structed a “complex chain of interrelated concepts” [02], 120. Galois creates
a normal equation from the given equation by constructing a primitive el-
ement; to make precise the concept of a group of permutations; to define
the Galois group of the equation; and to introduce the concepts of a normal
subgroup, of a factor group, and of a solvable group [09], 116.
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Appendix II

6.1 Prerequisites

It is now possible to prove the Fundamental Theorem of Algebra with a purely
algebraic proof, using Galois theory. We will use the following Theorems in
proving the Fundamental Theorem of Algebra: [07], 396

Theorem 6.1.1. Let F be any field. Then the following statements are
equivalent:
(1) F is algebraically closed
(2) f(x) ∈ F [x] is irreducible if and only if the degree of f(x) 6= 1
(3) Every non-constant polynomial in F [x] splits over F
(4) If E is an algebraic extension of F , then E = F

Theorem 6.1.2. Let f(x) ∈ F [x] be an irreducible polynomial over a field
F . Then:
(1) If char F = 0, then f(x) is separable over F
(2) If char F = p, then f(x) is separable over F if and only if f(x) 6= g(xp)
for any polynomial g(x) ∈ F [x]

Theorem 6.1.3. (First Sylow Theorem) Let p be a prime, and let G be
a finite group, and suppose |G| = pnm, where n ≥ 1 and p does not divide
m. Then for all k with 1 ≤ k ≤ n, G contains at least one subgroup of order
pk (and so contains a Sylow p-subgroup)

Theorem 6.1.4. Fundamental Theorem of Galois Theory Let E be a
Galois extension of a field F . For any intermediate field K, F ⊆ K ⊆ E, let

61
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χ(K) = Gal(E/K). Then:
(1) χ is a one-to-one map from the set of all intermediate fields K to the set
of all subgroups of Gal(E/F )
(2) K = EGal(E/K)

(3) χ(EH) = H for all H ≤ Gal(E/F )
(4) [E : K] = |Gal(E/K)|
(5) [K : F ] = the index of Gal(E/K) in Gal(E/F ), for which we will use the
notation |Gal(E/F ) : Gal(E : K)|
(6) K is a Galois (or normal) extension of F if and only if Gal(E/K)�
Gal(E/F ), in which case Gal(K/F ) ∼= Gal(E/F )/Gal(E/K)
(7) For any two intermediate fields K1, /,K2 we have K1 ⊆ K2 if and only
if χ(K2) ≤ χ(K1) and thus the lattice of subgroups H ≤ Gal(E/F ) is the
lattice of intermediate fields F ⊆ K ⊆ E, inverted

Corollary 6.1.5. Every polynomial f(x) ∈ R[x] of odd degree has a zero in
R

Theorem 6.1.6. Let p be a prime, and let G be a finite group, and suppose
|G| = pn, where n ≥ 1. Then G contains for all k with 1 ≤ k ≤ n, at least
one subgroup of order pk that is a normal subgroup of a subgroup of order
pk+1

Note 6.1.7. The quadratic formula expresses the zeros of any quadratic
polynomial in terms of square roots. Thus, by guaranteeing the existence of
square roots, the Intermediate Value Theorem guarantees that every poly-
nomial f(x) ∈ C[x] of degree 2 has a zero in C.

6.2 Fundamental Theorem of Algebra,

Galois-style!

We may now prove the Fundamental Theorem of Algebra [07], 396.

Theorem 6.2.1. The Fundamental Theorem of Algebra The field C
of complex numbers is algebraically closed.

Proof. By Theorem 6.1.1, it suffices to show that any non-constant polyno-
mial f(x) ∈ C[x] has a zero in C. Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0
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and let
f(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 ∈ C[x],

where f(x) is the complex conjugate of f(x). Let g(x) = f(x)f(x). Then
g(x) ∈ R[x] and f(x) has a zero in C if and only if g(x) has a zero in C.
Therefore, it suffices to show that any non-constant polynomial in R[x] has
a zero in C.

Let g(x) be an irreducible polynomial in R[x].

Note: An irreducible polynomial is a polynomial that cannot be factored
into nontrivial polynomials; in other words, an irreducible polynomial cannot
be written as the product of two polynomials, both of a smaller degree.

Let
h(x) = (x2 + 1)g(x) ∈ R[x]

and let E be an algebraic extension field of C that is a splitting field of h(x).

Note: The extension field E of the field C is a splitting field for the polyno-
mial h(x) ∈ C[x] since h(x) factors completely into linear factors in E and
does not factor completely into linear factors over any proper subfield of E
containing C.

Note: We need to define this h(x) because we want C to be contained in
E. If we use g(x), E is an extension field that splits g(x) but C is not nec-
essarily contained in E. For example, if f(x) = ix and so f(x) = −ix and
g(x) = −x2, g(x) splits to −x, x, so R ⊆ E but C * E. Our defined h(x),
however, necessarily must include i as it splits, so C ⊆ E.

Then, E is a Galois extension of R by Theorem 6.1.2.

Consider the Galois group Gal(E/R) = G. Let

|G| = 2kmwherem is odd.

By the First Sylow Theorem (Theorem 6.1.3), G has a 2-Sylow subgroup P
of order 2k, and P / G. By the Galois Correspondence, (Theorem 6.1.4 -
Fundamental Theorem of Galois Theory, part 5),

[EP : R] = |G : P | = m.
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Thus, EP is an extension of R of degree m, which implies that there exists
an irreducible polynomial of degree m over R. By Corollary 6.1.5, the only
odd m for which this is possible is m = 1. Thus

|G| = 2k.

Since R(i) = C ⊆ E, Gal(E/C) = J is a subgroup of G and hence, by
LaGrange, |J | = 2n for some n ≤ k. By Theorem 6.1.6, every group of order
pn has a subgroup of order pi for every 1 ≤ i ≤ n. Thus, if n > 0, J has a
normal subgroup H of order 2n−1. Then

[EH : C] = |J : H| = 2.

Thus EH is an extension of C of degree 2, which implies that there exists an
irreducible polynomial of degree 2 over C. In other words, if J is non-trivial,
it has a subgroup H of index 2, and we have an irreducible polynomial of
degree 2 over C. But, according to Note 6.1.7, this is impossible.

So n = 0, E = C, and C contains the zeros of the polynomial h(x), so
C contains the zeros of our irreducible polynomial g(x) ∈ R[x] and C con-
tains the zeros of our non-constant polynomial f(x).

∴ by Theorem 6.1.1 the field C of complex numbers is algebraically closed.

6.3 Conclusion

Of course, the evolution of algebra does not end with the Fundamental Theo-
rem of Algebra, or with Galois Theory. The development of group theory by
Galois was continued by Lagrange, Cauchy, and Camille Jordan, to name just
a few. Number theory and commutative algebra continued to be developed
beyond the 19th century, and linear and noncommutative algebra was like-
wise developed in the 19th and 20th centuries. Also, with the introduction of
abstract objects such as groups, rings, fields, ideals, matrices, algebras, etc.,
the influence of algebra has continued to influence all areas of mathematics
as well as physics, especially in the area of quantum mechanics [02], 162.
However, for the purposes of this paper, it suffices to show that the Arab
mathematician’s influence extended through European mathematics even to
the formulation and proof of the Fundamental Theorem of Algebra.
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