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1 Abstract

This paper deals with some interesting properties of ”Pascal’s Hexagons”, which
is a construction modeled after Pascal’s triangle. Placing 1s on the upper 3 sides
of a hexagon in an integral lattice and applying Pascal’s algorithm produces
a finite hexagonal array. Closed formulas were developed for the last row and
pedagogical and visual generalizations were devised. There is a theorem, entitled
Pascal’s Hexagon Theorem, that involves inscribing a hexagon in a circle, but
that theorem is unrelated to this construction. [3]

2 What is a Pascal’s Hexagon?

A Pascal’s hexagon is an array of integers in the shape that is constructed in a
similar manner to Pascal’s triangle.

Construction:
For a hexagon where the first row is length n

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n a2,n+1

...
...

...
...

...
an,1 · · · · · · an,2n−1

an+1,1 · · · · · · an+1,2n−2

...
...

a2n−1,1 · · · a2n−1,n

a1,k is given
aj,1 = aj+1,1 forj ≤ n
aj+1,k = aj,k−1 + aj,k forj ≤ n
aj+1,k = aj,k + aj,k+1 forj > n
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2.1 Examples

n = 1

1
n = 2

1 1
1 2 1

3 3

n = 3
1 1 1

1 2 2 1
1 3 4 3 1

4 7 7 4
11 14 11

n = 4
1 1 1 1

1 2 2 2 1
1 3 4 4 3 1

1 4 7 8 7 4 1
5 11 15 15 11 5

16 26 30 26 16
42 56 56 42

3 Research Questions

The research was directed at the following two questions:
What is the formula for the largest number in the hexagon?
What is the formula for the sum of the last row in the hexagon?

Generating functions can be used to answer the first question:

Theorem 3.1. If a0 , · · · , an and b0 , · · · , bn+1 are consecutive rows using
the Pascal sum, and if p(x) = a0 + a1x+ · · ·+ anx

n and q(x) = b0 + b1x+ · · ·+
bn+1x

n+1. then
q(x) = (1 + x)p(x)

Proof. In a Pascal construction, let a0, a1, · · · , an define a row then the next
row of consecutive entries will be

a0, a0 + a1, a1 + a2, · · · , an−1 + an, an

And

q(x) = a0 + (a0 + a1)x+ (a1 + a2)x2 + · · ·+ (an−1 + an)xn + anx
n+1
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After a little algebra

q(x) = a0 + a1x+ · · ·+ anx
n + a0x+ a1x

2 + · · ·+ anx
n+1

= p(x) + xp(x)
= (1 + x)p(x) q.e.d.

The hexagons are constructed similarly to how Pascal triangles are constructed
except the first row is length n and two lower triangle regions are ignored.

Theorem 3.2. The largest entry in a hexagon that starts with 1’s is equal
to

n−1+bn−1
2 c∑

i=bn−1
2 c

(
2n− 2
i

)

Proof. Using Theorem 1, the coefficients for the expression q(x) = (1 +
x)r−1p(x) are equal to the entries in the rth row of the hexagon. With the
last row, r = 2n− 1. If the first row is all 1’s, then

p(x) = 1 + x+ · · ·+ xn−1

Then the largest number will be in the center entry and be equal to the coefficient
for xb

3n−2
2 c term in q(x). The coefficient of thexr term in (1+x)r is equal to

(
n
r

)
[1] For the equation (1 + x0)2n−2(1 + x1 + · · ·+ xn−1

1 ) the coefficient of xb
3n−2

2 c

or xn−1+bn−1
2 c is equal to the sum of the coefficients of terms xb

n
2 c

0 xn−1
1 , · · · ,

x
n−3+bn

2 c
0 x2

1, x
n−2+bn

2 c
0 x1 therefore the largest entry in a hexagon equals

n−1+bn−1
2 c∑

i=bn−1
2 c

(
2n− 2
i

)

q.e.d.

It is interesting to note that the largest integer increases almost by a factor
of four.

n∑
i=0

(
n

k

)
= 2n therefore

2n−2∑
i=0

(
2n− 2
i

)
= 22n−2 = 4n−1

n−1+bn−1
2 c∑

i=bn−1
2 c

(
2n− 2
i

)
= 4n−1 −

bn−1
2 c−1∑
i=0

(
2n− 2
i

)
−

2n−2∑
i=bn−1

2 c+n

(
2n− 2
i

)
It is easy to see why the largest integer increase almost by a factor of four.
A simpler formula or a recursion was not found. However, here are few of the
things that were tried.
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3 = 41 − 1
14 = 42 − 2
56 = 43 − 2
238 = 44 − 18
957 = 45 − 67

The largest number took on the pattern 4n−1 - ε. The search for a formula for
the sequence 1, 2, 8, 18, 67, 576, 1394 using an online sequence database was un-

successful. [2] However, if n is odd, the largest number = 4n1−2

n−1
2 −1∑
i=0

(
2n− 2
i

)

If n is even, the largest number = 4n−1 − 2

n
2−2∑
i=0

(
2n− 2
i

)
−
(

2n− 2
3n
2 − 1

)
There might be a recursion between the evens or odds, perhaps l(n + 2) =
16l(n) + ε
In the odd case the sequence for ε is 8, 61, 496 and for the even case the sequence
is 14, 130, 1134. However, a pattern for either sequence was not found.

4 Variation of the hexagon

One variation on the hexagon is to start with a row of integers other than 1.
For example:

1 3 2
1 3 5 2

1 4 8 7 2
5 12 15 9

17 27 24

One would think that the largest integer would be in the center of the last row,
but this is not always the case.

Let a0, a1, · · · , an−1 be the first row then the formula for the first entry in
the last row is:

n−1∑
i=0

an−1−i

(
2n− 2
i

)
and the formula for the second term is:

n∑
i=1

an−i

(
2n− 2
i

)
and the last row is:

n−1∑
i=0

an−1−i

(
2n− 2
i

)
,

n∑
i=1

an−i

(
2n− 2
i

)
, · · · ,

2n−2∑
i=n−1

a2n−2−i

(
2n− 2
i

)
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The largest term on the last row can be any of the entries depending on the
values in the first row. For n = 3, let a0, a1, a2 be the first row and then the
last row will be

6a0 + 4a1 + a2 4a0 + 6a1 + 4a2 a0 + 4a1 + 6a2

The largest term in the last row is dependent upon which of 5a0 or 3a0+2a1+3a2

or 5a2 is the largest.

5 Second Research Question

To find the sum of the last row, one must first find the formula for each term
using the same method used to find the largest integer. One can obtain a formula
for the first integer in the row which is

n−1∑
i=0

(
2n− 2
i

)
The formula for the second integer is

n∑
i=1

(
2n− 2
i

)
There are n integers in the last row and the sum of the last row equals

n−1∑
i=0

(
2n− 2
i

)
+

n∑
i=1

(
2n− 2
i

)
+ · · ·+

2n−2∑
i=n−1

(
2n− 2
i

)
This formula can be simplified with some reorganization

n−1∑
i=0

(
2n− 2
i

)
=
(

2n− 2
0

)
+

(
2n− 2

1

)
+ · · ·+

(
2n− 2
n− 1

)
+

n∑
i=1

(
2n− 2
i

)
=

(
2n− 2

1

)
+ · · ·+

(
2n− 2
n− 1

)
+
(

2n− 2
n

)
+
...

+
n∑

i=1

(
2n− 2
i

)
=

(
2n− 2
n− 1

)
+ · · ·+

(
2n− 2
2n− 2

)
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=
n−1∑
j=1

(j + 1)
(

2n− 2
j

)
+

2n−2∑
j=n

(2n− 1− j)
(

2n− 2
j

)

Theorem 5.1.
(
2n−2

j

)
=
(

2n−2
2n−2−j

)
[1]

Using Theorem 5.1 and 2n− 1− (2n− 2− j) = j + 1 one finds

n−1∑
j=0

(j+1)
(

2n− 2
j

)
+

2n−2∑
j=n

(2n−1−j)
(

2n− 2
j

)
= 2

n−1∑
j=0

(j + 1)
(

2n− 2
j

)−n(2n− 2
n− 1

)

Subtract out the j = n− 1 term is necessary to avoid be counted twice.
Let m = n− 1

2

 m∑
j=0

(j + 1)
(

2m
j

)− (m+ 1)
(
2m
m

)
=

m∑
j=0

2j
(

2m
j

)
+

m∑
j=0

2
(

2m
j

)
− (m+ 1)

(
2m
m

)

=
m∑

j=0

2j
(

2m
j

)
+

2m∑
j=0

(
2m
j

)
+
(

2m
m

)
− (m+ 1)

(
2m
m

)

Theorem 5.2
m∑

j=0

2
(

2m
j

)
=

2m∑
j=0

(
2m
j

)
+
(

2m
m

)
Proof

(
2m

m−i

)
=
(

2m
m+i

)
it follows

m∑
j=0

(
2m
j

)
=

2m∑
j=m

(
2m
j

)
q.e.d

Lemma 5.1
n∑

i=0

(
n

k

)
= 2n [1]

Theorem 5.3
m∑

j=0

2j
(

2m
j

)
= m22m

Proof
m∑

j=0

2j
(

2m
j

)
=

m∑
j=0

2(2m)
(

2m− 1
j − 1

)
Let k = j − 1

=
m−1∑
k=1

2(2m)
(

2m− 1
k

)

=
2m−1∑
k=0

(2m)
(

2m− 1
k

)
= 2m22m−1
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= m22m q.e.d

Using Theorem 5.2 and Theorem 5.3 we find the sum of the last row to be

=
m∑

j=0

2j
(

2m
j

)
+

2m∑
j=0

(
2m
j

)
− (m)

(
2m
m

)
= m22m + 22m −m

(
2m
m

)
= (m+ 1)22m −m

(
2m
m

)
or

n4n−1 − (n− 1)
(

2n− 2
n− 1

)
This is the formula for the sum of the last row of the nth hexagon, where the
first row is all 1’s.

6 Another triangle

A triangle can be formed out of the last rows of the hexagons
1

3 3
11 14 11

42 56 56 42
163 218 238 218 163

638 847 957 957 847 638
2510 3301 3784 3939 3784 3301 2510

There was no simple way found to generate this triangle.
Let T (r, e) = the entry in the triangle in the rth row and in the eth position
For example, T (3, 2) = 14
To find the first integer in a row

T (r + 1, 1) = 4T (r, 1)− 2(r − 1)!
(r − 1)!r!

To find the rest

T (r, e+ 1) = T (r, e)−
(

2(r − 1)
e− 1

)
+
(

2(r − 1)
e− 1 + r

)

The reader can prove this formula by examining the summation formulas. Other
simpler methods were tired but failed. One such method was:
Finding a pattern for the difference between the first and second entry in each
row resulting in the following sequence 3, 14, 55, 299, 791, 3002 but a pattern was
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not found.
Another pattern tired was

T (r, 2) = T (r, 1) + T (r − 1, 1) + T (r − 2, 1) + ε

the resulting sequence for ε was 0, 2, 4, 350, 214 but I couldn’t find a pattern or
formula.

7 Other properties

Here are some interesting properties, which can be left to the reader to prove.
Modifying the notation earlier, let an,r,e be the eth entry in rth row of the nth

hexagon. Let Σ(n, r) be the sum of the rth row in the nth hexagon.
an,n,n = 2n−1

an+1,n+2,n = 2an,n+1,n−1 − 1
Σ(n, r) = n2r−1 if r ≥ n
Σ(n+ 1, r) = Σ(n, r) + 2r−1 if ≥ n
Σ(n, n+ 1) = n2n − 2
Σ(n, n+ 2) = n2n+1 − 2− 2(n+ 2)
Σ(n, n+ 3) = n2n+2 − 2− 2(n+ 3)− (n+ 2)(n+ 3) + 2
Σ(n, n+ 4) = n2n + 3− 2− 2(n+ 4) + 2− 2( (n+2)(n+3)(n+4)

6 + n+ 4)
Let l(n, r) = the largest entry in the rth row of the nth hexagon.
l(n, r + 1) = 2l(n, r) if r ≤ n
l(n, n+ 2) = 2l(n, n+ 1)
l(n, n+ i) = 2l(n, n+ i− 1) ifi is even
if you write out the largest number in every row
20

21

...
2n−1

2n − 1
2n+1 − 2
2n+2 − 4− n
2n+3 − 8− 2n
2n+4 − 16− 4n− n(n+3)

2
2n+5 − 32− 8n− n(n+ 3)
2n+6 − 64− 16n− 2n(n+ 3)− n(n+4)(n+5)

6

2n+7 − 128− 32n− 4n(n+ 3)− n(n+4)(n+5)
3

2n+8 − 256− 64n− 8n(n+ 3)− 2n(n+4)(n+5)
3 − n(n+5)(n+6)(n+7)

24

After n + 1 rows in every other row the largest number doubles, but the next
row it doubles and then a term is subtracted. The new row will have an-
other term with n, and if the last term started n(n+ i) · · · the terms so far are

8



n, n(n+3)
2! , n(n+4)(n+5)

3! , n(n+5)(n+6)(n+7)
4! the next term should be n(n+6)(n+7)(n+8)(n+9)

5! .
If you look at a hexagon it is obvious why it doubles every other row.

8 Future work

There are several open questions that need to answer. One is proving the pattern
mentioned above. Another is to find a recursion with the largest number in the
hexagon. Another is to deal with the case where the first row isn’t all 1’s. Also
to find a rule to determine which integer will be the largest in the last row, given
the first row.
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