
Week 4 Progress Report

Abdulmajed Dakkak

July 4th, 2008

Saturday/Sunday

Looked over the Schaber method, and figured out how to Schaberize simpleGL.
Wrote a rule 90 1D cellular automata in openGL to experiment with C’s boolean
operators. The 1D cellular automata was then ported to CUDA, although
the graphics are off, since I do not know anything about vertex buffer objects.
Finally, I implemented the FHP model.

Read a little bit about the FCHC model.

Code

• FHP

• Open GL Rule 90

• rule90 cuda.tar.gz (Cuda’s Rule 90 CA, Kernel)

Monday

Schaberized the simpleGL example included in the CUDA projects, and worked
with Chase and Will to migrate fluidsGL from Unix Sockets to Winsocks.

Code

• Schaberized SimpleGL(client, server, kernel)

1

file:code/fhp.c
file:code/rule90.c
file:code/CA.tar.gz
file:code/CA/ca.cu
file:code/CA/ca_kernel.cu
file:code/dynamic_simpleGL.tar.gz
file:code/dynamic_simpleGL/dyn_simpleGL_client.c
file:code/dynamic_simpleGL/dyn_simpleGL_server.cu
file:code/dynamic_simpleGL/dyn_simpleGL_kernel.cu

Tuesday

Decided that I do not care much about Windows, and started my effort to more
the fhp code from openGL to CUDA. Converted my representation of the lattice
from a 2D object to a 1D flat array. It turns out that this might not have been
a good choice.

Code

• FHP CUDA (fhp.cu, fhp kernel.cu, types.h)[Does not work]

Wednesday

Joined Will and Chase, again, in researching for ways of making the Schaber
method work in Windows. This meant going through the Windows documen-
tation, forums, and some Winsock books trying to find why Winsock does not
implement MSG_WAITALL.

Formed a pact to stay all night (if we have to) to get fluidGL into Sysgz. In the
end we had to and stayed. Around 9AM the next morning the next night we
got something that should work in the CAVE.

Thursday

CUDA/FHP

Made the fhp program work on the CUDA chip. The problem was with the
following piece of code

dim3 block(32, 32, 1);
dim3 grid(LATTICE_WIDTH / block.x, LATTICE_HEIGHT / block.y, 1);
collision<<<grid, block>>>(gpu_c1, gpu_c2, gpu_c3, gpu_c4, gpu_c5, gpu_c6,

gpu_k1, gpu_k2, gpu_k3, gpu_k4, gpu_k5, gpu_k6,
gpu_boundary);

propagate<<<grid, block>>>(gpu_c1, gpu_c2, gpu_c3, gpu_c4, gpu_c5, gpu_c6,
gpu_k1, gpu_k2, gpu_k3, gpu_k4, gpu_k5, gpu_k6);

From my understanding of CUDA, a few grids (LATTICE_WIDTH / block.x
to be precises) containing LATTICE_HEIGHT / block.y blocks which in turn
contain block.x * block.y or 32*32 threads would be allocated on the GPU.
If that fails, then CUDA will figure everything out and everyone would be

2

file:code/fhp-cuda.tar.gz
file:code/fhp-cuda/fhp.cu
file:code/fhp-cuda/fhp_kernel.cu
file:code/fhp-cuda/types.h

happy. This is not the case, however, and the results were not seen in the
form of an error in this function. Rather, when I tried to copy the results after
computation.using cudaMemcpy

cudaMemcpy(c1, gpu_c1, ARRAY_LENGTH, cudaMemcpyDeviceToHost);
cudaMemcpy(c2, gpu_c2, ARRAY_LENGTH, cudaMemcpyDeviceToHost);
cudaMemcpy(c3, gpu_c3, ARRAY_LENGTH, cudaMemcpyDeviceToHost);
cudaMemcpy(c4, gpu_c4, ARRAY_LENGTH, cudaMemcpyDeviceToHost);
cudaMemcpy(c5, gpu_c5, ARRAY_LENGTH, cudaMemcpyDeviceToHost);
cudaMemcpy(c6, gpu_c6, ARRAY_LENGTH, cudaMemcpyDeviceToHost);

I was getting the same array as I had before; i.e. gpu_c[1-6] = c[1-6]. This
meant that I only saw the initial positions of particles, and nothing changed. I
knew, however, that something must have changed, because, at the very least,
the positions should have propagated.

After a few hours (4 to be more precise) I figured out that the problem can be
fixed by setting the block size to 16*16 rather than 32*32.

dim3 block(32, 32, 1);

This was found on the forums, among many other places. This is the first time
I also saw the immaturity of CUDA. Take, for example, the following piece of
code:

int x = powf(2.0, 3.0);

In regular mathematics we are taught that 23 = 8, but in CUDA’s opinion the
answer is 7. This phenomenon continues for other odd powers of 2.

Schaberization

I also stuck around trough the night with Chase and Will helping them in
making the Phleet and CUDA talk. Will and Chase did the majority of the
work, and I only helped a bit with debugging. Incidentally, the problem they
were encountering, namely with some dimensions working while others not,
might be related to the problem with odd powers of 2 found in CUDA. Their
programs fail, have interesting behavior, or are slow if you use odd powers of
two (although we are limited by what we could try).

Code

• FHP CUDA (fhp2.cu, fhp kernel2.cu, types2.h)

3

file:code/fhp-cuda2.tar.gz
file:code/fhp-cuda2/fhp.cu
file:code/fhp-cuda2/fhp_kernel.cu
file:code/fhp-cuda2/types.h

Friday

After the long night (and subsequents sleep), I noticed that the toroidal bound-
ary is not working in fhp-cuda. Thus one of my aims today is to fix that issue.
Possibly the most important thing, however, is to optimize the code. This means
that I have to learn more about CUDA’s memory architecture and use Vertex
Buffer Objects (or vbo); something I dreaded from the beginning.

I also noticed that CUDA’s profiler which I downloaded and tried two weeks
ago (ans is invaluable for the optimization) now gives a segfault. I will talk to
Johnathan on Monday to see if this is related to the update done last week.

4

