
Computing and Visualization in Science manuscript No.
(will be inserted by the editor)

Jonas Tölke

Implementation of a Lattice Boltzmann kernel using
the Compute Unified Device Architecture developed by
nVIDIA

Received: date / Accepted: date

Abstract In this article a very efficient implementation
of a 2D-Lattice Boltzmann kernel using the Compute
Unified Device Architecture (CUDATM) interface devel-
oped by nVIDIA R© is presented. By exploiting the ex-
plicit parallelism exposed in the graphics hardware we
obtain more than one order in performance gain com-
pared to standard CPUs. A non-trivial example, the flow
through a generic porous medium, shows the performance
of the implementation.

1 Introduction

A Graphical Processing Unit (GPU) is specifically de-
signed to be extremely fast at processing large graphics
data sets (e.g., polygons and pixels) for rendering tasks.
The use of the GPU to accelerate non-graphics compu-
tations has drawn much attention [2,3,14]. This is due
to the fact that the computational power of GPUs has
exceeded that of PC-based CPUs by more than one or-
der of magnitude while being available for a comparable
price. For example the recently released nVIDIA GeForce
8800 Ultra has been observed to deliver over 4 × 1011

single precision (32-bit) floating operations per second
(400 GFLOPS) [18]. In comparison, the theoretical peak
performance of the Intel Core 2 Duo 2.4 GHz is only
19.2 GFLOPS for double and 38.4 GFLOPS for single
precision. Also the bandwidth to the memory interface
is much larger: Memory bandwidth for desktop comput-
ers ranges from 5.3 to 10.7 GigaByte per second (GB/s),
whereas the nVIDIA GeForce 8800 Ultra delivers up to
104 GB/s.

Due to the facts that Lattice Boltzmann (LB) meth-
ods operate on a finite difference grid, are explicit in na-
ture and require only next neighbor interaction they are

J. Tölke
Institute for computer based modeling in civil engineering
TU Braunschweig
Tel.: +49-531-3917592
Fax: +49-531-3917599
E-mail: toelke@cab.bau.tu-bs.de

very suitable for the implementation on GPUs. In [16]
the computation of the LBM is accelerated on general-
purpose graphics hardware by grouping particle packets
into 2D textures and mapping the Boltzmann equations
completely to the rasterization and frame buffer oper-
ations. A speedup of at least one order of magnitude
could be achieved compared to an implementation on a
CPU. Applications for LB simulations in graphics hard-
ware range from real-time ink dispersion in absorbent
paper [5], dispersion simulation and visualization for ur-
ban security [20], simulation of soap bubbles [24], simu-
lation of miscible binary mixtures [29], melting and flow-
ing in multiphase environment [28] and visual simulation
of heat shimmering and mirage [27]. Even GPU clusters
have been assembled for general-purpose computation [8]
and LB simulation have been performed. An implemen-
tation of a Navier-Stokes solver on a GPU can be found
in [26]. Nevertheless all these applications use a program-
ming style close to the hardware especially developed for
graphics applications.

The remainder of the paper is organized as follows:
In section 2 the graphics hardware is shortly sketched,
in section 3 the Compute Unified Device Architecture
(CUDA) programming technology is presented, in sec-
tion 4 the D2Q9 LB model is described, in section 5 the
implementation of this model using CUDA is described,
section 6 discusses the performance of the approach, sec-
tion 7 gives an example and section 8 concludes the paper
and gives a short outlook.

2 nVIDIA - G80: the parallel stream processor

The G80-chip on a nVIDIA 8800 Ultra graphics card has
16 multiprocessors with 8 processors each, for a total of
128 processors. These are generalized floating-point pro-
cessors capable of operating on 8-,16- and 32-bit integer
types and 16- and 32-bit floating point types. Each mul-
tiprocessor has a memory of 16 KB size that is shared
by the processors within the multiprocessor. Access to a
location in this shared memory has a latency of only 2

2 Jonas Tölke

clock cycles allowing fast nonlocal operations. The pro-
cessors are clocked (Shader Clock) at 1.6GHz, giving the
GeForce 8800 Ultra a tremendous amount of floating-
point processing power. Assuming 2 floating point op-
erations per cycle (one addition and multiplication) we
obtain 2 × 1.6 × 128 GFLOPS = 410 GFLOPS. Each
multiprocessor has a Single Instruction, Multiple Data
architecture (SIMD).

The multiprocessors are connected by a crossbar-style
switch to six Render Output Unit (ROP) partitions. Each
ROP partition has its own L2 cache and an interface to
device memory that is 64-bits wide. In total, that gives
the G80 a 384-bit path to memory with a clock frequency
of 1100 MHz. This results in a theoretical memory band-
width of 384/8 × 1.1 × 2 (DDR) GB/s = 104 GB/s. In
practice 80 % of this value can be achieved for simple
copy throughput. The transfer rates over the PCI-E bus
are dependent on the system configuration. Assuming
PCI-Ex16, the transfer speed is 1.5 GB/s for peagable
memory and 3.0 GB/s for pinned memory. The available
amount of memory is 768 MegaByte (MB). The nVIDIA
Quadro GPUs deliver memory up to 2 GigaByte (GB).
There is also new product line called ’NVIDIA Tesla’
(also based on the G80 chip) especially designed for High
performance computing .

3 nVIDIA CUDA

3.1 Introduction

The nVIDIA CUDA technology [18] is a fundamentally
new computing architecture that enables the GPU to
solve complex computational problems. CUDA (Com-
pute Unified Device Architecture) technology gives com-
putationally intensive applications access to the process-
ing power of nVIDIA graphics processing units (GPUs)
through a new programming interface. Software develop-
ment is strongly simplified by using the standard C lan-
guage. The CUDA Toolkit is a complete software devel-
opment solution for programming CUDA-enabled GPUs.
The Toolkit includes standard FFT and BLAS libraries,
a C-compiler for the nVIDIA GPU and a runtime driver.
CUDA technology is currently supported on the Linux
and Microsoft Windows XP operating systems. We used
the version 1.1 for the implementation.

3.2 Application Programming Interface (API)

In this subsection only a small subset of the API fol-
lowing [18] needed for the LB kernel is discussed. The
GPU is viewed as a compute device capable of executing
a very high number of threads in parallel. It operates
as a coprocessor to the main CPU called host. Data-
parallel, compute-intensive portions of applications run-
ning on the host are off-loaded onto the device by using a

function that is executed on the device as many different
threads. Both the host and the device maintain their own
DRAM, referred to as host memory and device memory,
respectively. One can copy data from one DRAM to the
other through optimized API calls that utilize the de-
vices high-performance Direct Memory Access (DMA)
engines.

Thread Block A thread block is a batch of threads that
can cooperate together by efficiently sharing data through
some fast shared memory and synchronizing their exe-
cution to coordinate memory accesses by specifying syn-
chronization points in the kernel. Each thread is identi-
fied by its thread ID, which is the thread number within
the block. An application can also specify a block as a
three-dimensional array and identify each thread using
a 3-component index. The layout of a block is specified
in a function call to the device by a variable type dim3,
which contains three integers defining the extensions in
x,y,z. If one integer is not specified, it is set to one. In-
side the function the built-in global variable blockDim
contains the dimensions of the block. The built-in global
variable threadIdx is of type uint3 (also a type composed
of three integers) and contains the thread index within
the block. To exploit the hardware efficiently a thread
block should contain at least 64 threads and not more
than 512.

Grid of Thread Blocks There is a limited maximum num-
ber of threads (in the current CUDA Version 512) that
a block can contain. This number can be smaller due to
the amount of local and shared memory used. However,
blocks that execute the same kernel can be batched to-
gether into a grid of blocks, so that the total number
of threads that can be launched in a single kernel in-
vocation is much larger. This comes at the expense of
reduced thread cooperation, because threads in different
thread blocks from the same grid cannot communicate
and synchronize with each other. Each block is identified
by its block ID. An application can also specify a grid as
a two-dimensional array and identify each block using a
2-component index. The layout of a grid is specified in a
function call to the device by a variable type dim3, which
contains two integers defining the extensions in x,y. The
third integer is set to one. Inside the function the built-
in global variable gridDim contains the dimensions of the
grid. The built-in global variable blockIdx is of type uint3
and contains the block index within the grid. The differ-
ent blocks of a grid can run in parallel and to exploit the
hardware efficiently at least 16 blocks per grid should
be used. For future devices this value may increase. The
present upper limit for the number of blocks is 65535 in
each dimension.

Function Type Qualifiers

– The device qualifier declares a function that is exe-
cuted on the device and callable from the device only.

Implementation of a LB kernel using CUDA 3

– The global qualifier declares a function as being a
kernel. Such a function is executed on the device and
callable from the host only. Any call to a global
function must specify the execution configuration for
that call. The execution configuration defines the di-
mension of the grid and blocks that will be used to
execute the function on the device. It is specified by
inserting an expression of the form <<< Dg, Db>>>
between the function name and the parenthesized ar-
gument list, where Dg is of type dim3 and specifies
the dimension and size of the grid, such that Dg.x ·
Dg.y equals the number of blocks being launched. Db
is also of type dim3 and specifies the dimension and
size of each block, such that Db.x · Db.y · Db.z equals
the number of threads per block;

– The host qualifier declares a function that is exe-
cuted on the host and callable from the host only.

Variable Type Qualifiers

– The device qualifier declares a variable that resides
in global memory space of the device. It is accessi-
ble from all the threads within the grid (with a la-
tency of about 200-300 clock cycles) and from the
host through the runtime library.

– The shared qualifier declares a variable that resides
in the shared memory space of a thread block and is
only accessible from all the threads within the block
(but with a latency of only 2 clock cycles).

Memory management

– cudaError t cudaMalloc(void** devPtr, size t count) al-
locates count bytes of linear memory on the device
and returns in *devPtr a pointer to the allocated
memory. The allocated memory is suitably aligned
for any kind of variable.

– cudaError t cudaMemcpy(void* dst, const void* src,
size t count, enum cudaMemcpyKind kind) copies count
bytes from the memory area pointed to by src to the
memory area pointed to by dst, where kind is one of
– cudaMemcpyHostToHost,
– cudaMemcpyHostToDevice,
– cudaMemcpyDeviceToHost or
– cudaMemcpyDeviceToDevice

and specifies the direction of the copy.

Both functions can only be called on the host.

Synchronization The function void syncthreads() syn-
chronizes all threads in a block. Once all threads have
reached this point, execution resumes normally. This func-
tion can only be used in device functions.

3.3 Memory Bandwidth

The effective bandwidth of each memory space depends
significantly on the memory access pattern. Since de-

vice memory is of much higher latency and lower band-
width than on-chip shared memory, device memory ac-
cesses should be arranged so that simultaneous mem-
ory accesses of one block can be coalesced into a sin-
gle contiguous, aligned memory access. This means that
each block thread number N should access element N at
byte address BaseAddress+sizeof(type)*N, where N starts
from zero and sizeof(type) is equal to 4, 8, 16. Moreover
BaseAddress should be aligned to 16*sizeof(type) bytes,
otherwise memory bandwidth performance breaks down
to about 10 GB/sec [23]. Any address of a variable resid-
ing in global memory or returned by one of the memory
allocation routines is always aligned to satisfy the mem-
ory alignment constraint.

3.4 Small Example

In this subsection a simple example is sketched. Each el-
ement of a float matrix of size nx,ny is initialized with 1.0
and then multiplied by 0.5. The data layout is done in a
way that a good performance can be achieved. The ele-
ments of the matrix are stored in a one-dimensional array
of size nx · ny, where the access pattern for element (x,y)
in the 1d-array is k = nx · y+x. We collect our data for
thread processing along the x-axis for contiguous mem-
ory access. The layout of each block is (num threads, 1,
1) so each block contains num threads elements and rep-
resents just a part of one line of the matrix. The grid of
blocks is defined as (nx/num threads,ny). In this simple
configuration nx,ny and num threads have to be a multi-
ple of 16 and nx ≥ num threads.

Excerpts of the host code read as follows:

...
// allocation of host memory
float* fH = (float*) malloc(mem_size_Mat);
// initialize host memory
for(y=0 ; y< ny ; y++){
for(x=0 ; x< nx ; x++){
k = nx*y+x;
fH[k]=1.0;
}

}
// allocate device memory
cudaMalloc((void**) &f0, mem_size_Mat);
cudaMalloc((void**) &f1, mem_size_Mat);
// copy host memory to device
cudaMemcpy(f0, fH, mem_size_Mat,
cudaMemcpyHostToDevice);

// setup execution parameters
dim3 threads(num_threads, 1, 1);
dim3 grid(nx/num_threads, ny);
//Execute the kernel
Kernel<<< grid, threads >>> (nx, f0,f1);
...

The device code (kernel) is very simple and reads as
follows:

4 Jonas Tölke

global void Kernel(int nx,float* f0,float* f1)
{
// number of threads
int num_threads = blockDim.x;
// Thread index
int tx = threadIdx.x;
// Block index x
int bx = blockIdx.x;
// x-Index
int x = tx + bx*num_threads;
// Block index y = y-Index
int y = blockIdx.y;
// f0[k]:Load data from device memory
// f1[k]:Write data to device memory
int k = nx*y + x;
f1[k]=0.5*f0[k];

}

With this setup a performance of 72 GB/sec is achieved
corresponding to 70 % of the theoretical maximum band-
width. With further optimizations (essentially using a
strided loop for the line segments to avoid function calls)
it is possible to obtain 87 GB/sec corresponding to 83 %
of the maximum bandwidth.

4 Lattice Boltzmann method

The Lattice Boltzmann method is a numerical method
to solve the Navier-Stokes equations [9,1,4], where parti-
cle distribution functions (mass fractions) propagate and
collide on a regular grid. In the following x represents a
two-dimensional vector in space and f a b-dimensional
vector, where b is the number of microscopic velocities.
We discuss the d2q9 model [19] with the following mi-
croscopic velocities,

{ei, i = 0, . . . , 8} =

�
0 c 0 −c 0 c −c −c c
0 0 c 0 −c c c −c −c

�
(1)

generating a space-filling lattice with a nodal distance
∆x = c∆t, where c is a constant microscopic velocity
and ∆t the time step. The lattice Boltzmann equation is

fi(t + ∆t, x + ei∆t) = fi(t, x) + Ωi, i = 0, . . . , 8 (2)

where fi are the particle distribution functions with unit
kg m−3 propagating with speed ei and Ω is the colli-
sion operator. The distribution functions are also labeled
depending on their direction (rest, east, north, west,
south, northeast, northwest, southwest, southeast) as
fr, fe, fn, fw, fs, fne, fnw, fsw, fse.

We use a modified version of the multi-relaxation
time (MRT) model [6,15,7,22]. The collision operator
is

Ω = M−1 k, (3)

where M is the transformation matrix given in appendix A
and k is the change of distribution functions in moment
space.

The moments m of the distribution functions are
given with

m = Mf := (ρ, ρ0ux, ρ0uy, e, pxx, pxy, hx, hy, ε), (4)

where ρ is a density variation, (ρ0ux, ρ0uy) is the momen-
tum and ρ0 is a constant reference density. The moments
e, pxx, pxy of second order are related to the strain rate
tensor by

∂x ux =
se

4 c2 ∆t

(
3(u2

x + u2
y)− e

ρ0

)
+

3 sν

4 c2 ∆t

(
u2

x − u2
y −

pxx

ρ0

)
∂y uy =

se

4 c2 ∆t

(
3(u2

x + u2
y)− e

ρ0

)
+

3 sν

4 c2 ∆t

(
u2

y − u2
x +

pxx

ρ0

)
∂y ux + ∂x uy =

3 sν

c2 ∆t
ux uy −

pxy

ρ0
,

(5)

where sν and se are relaxation rates. Moments hx, hy

and ε are of third and fourth order. Vector k is given
with

k0 = 0
k1 = gx∆t

k2 = gy∆t

k3 = ke = −se

(
e− 3 ρ0 (u2

x + u2
y)

)
k4 = kxx = −sν

(
pxx − ρ0 (u2

x − u2
y)

)
k5 = kxy = −sν (pxy − ρ0 ux uy)
k6 = khx = −sh hx

k7 = khy = −sh hy

k8 = kε = −sεε,

(6)

where G = (gx, gy) is a body force with unit kg s−2 m−2

and se and sh are relaxation rates related to the higher
order moments.

Performing either an Chapman-Enskog [9] or an asymp-
totic expansion [12,13] of equation (2), it can be shown
that the LB-Method is a scheme of first order in time
and second order in space for the incompressible Navier-
Stokes equations in the low Mach number limit. The
kinematic viscosity is related to the relaxation rate sν

by

ν = c2∆t(
1

3sν
− 1

6
). (7)

The hydrodynamic pressure is given by

p =
c2

3
ρ. (8)

The collision rates se, sh and sε are not relevant for the
incompressible limit of the Navier-Stokes equations and
can be chosen in the range [0, 2]. They can be tuned to
improve stability [15], where the optimal values depend
for the MRT model on the specific system under con-
sideration (geometry, initial and boundary conditions)

Implementation of a LB kernel using CUDA 5

and cannot be computed in advance. A good choice is to
set these values to one. If we omit the quadratic terms
in equation (6) the Stokes equations result. The corre-
sponding kernel is labeled as MRTL later in the text. For
Stokes flow a good choice for the relaxation rates is [10]

se = sε = sν , sh = 8
(2− sν)
(8− sν)

. (9)

If we set all relaxation rates to the same value the usual
LBGK collision [19] operator is obtained. The correspond-
ing kernels are labeled as LBGK and the linear variant
LBGKL.

Boundary conditions
In our implementation we use a voxel matrix indicat-
ing the type of cell node: inflow, outflow, solid or fluid
node. Solid walls are implemented by applying the sim-
ple bounce back rule for the distribution functions: on a
solid node all distribution functions are inverted meaning
that fe-fw, fn-fs, fne-fsw, fnw-fse are interchanged. Pres-
sure or velocity boundary conditions are implemented by
extrapolating the moments to the boundary node, set-
ting either the density or the momentum to the desired
value and transforming back with f = M−1m. For higher
order boundary conditions we refer to [10].

Forces on fixed obstacles
The force Fk acting on a boundary cut by a link k be-
tween xf and xb results from the momentum-exchange
between the particle distribution fî(t, xf) and fi(t+∆t, xf)
hitting the boundary [17] as shown in Fig. 1. The mo-
mentum change can be computed by regarding the dis-
tribution function before and after hitting the boundary.
Since the amplitude of fî is not altered by the simple
bounce back, Fk can be computed as

Fk(t + ∆t/2) = −2
∆x2 lz

∆t
eifi(t + ∆t, xf), (10)

where lz is the length in the third dimension. Drag and
lift forces on the whole obstacle are computed by sum-
ming up all contributions Fk,

F =
∑
k∈C

Fk + Fbody, (11)

where the sum goes through all the cut links k ∈ C for
all boundary nodes xf of the obstacle. If a body force
G is applied momentum conservation requires that one
adds the force exerted on the body by integrating over
the area A of the body

Fbody = lz

∫
A

−G dA (12)

For a detailed discussion concerning momentum transfer
we refer to [10].

xf

xb

f (t+Ät)i

f (t)î

Fig. 1 Momentum transfer on fixed obstacles

5 Implementation of a Lattice Boltzmann kernel

A detailed overview of the efficient implementation of
LB kernels for CPUs is given in [25]. Since the architec-
ture of the GPU is different, also the implementation is
different from a design optimized for CPUs. We have no
cache hierarchy, so the layout of the data structures has
to be designed in a way that the memory bandwidth is
exploited. In contrast to CPU design where one has to
avoid powers of two in the leading dimension of an array
for not having cache trashing effects, the opposite is true
for the GPU. Here memory addresses have to be aligned
as discussed in section 3.3.

In the LB method 9 particle distribution functions
have to be shifted in 9 different directions. We allocate
2 · 9 = 18 1-D arrays, one set for the current time step
and one set for the new time step with the restriction
that nx,ny have to be a multiple of 16. Also the arrays
are allocated with an offset startoff(=16) in y-direction
to allow an efficient shift of the distribution functions in
the propagation direction with north and south parts.
Distributions with east and west parts are propagated
using shared memory explained later.

In the time loop we have three kernel functions:

– LBCollProp: This kernel function is responsible for
collision and propagation of the fluid and no-slip nodes.
The layout of each block is (num threads, 1, 1) and
the grid of blocks is defined as (nx/num threads,ny).
The configuration for a 12 × 12 matrix and 4 threads
is shown in Fig. 2.

– LBExchange: This kernel function synchronizes the
distributions across the borders of the thread blocks.
The layout of each block is the same as before (num threads,
1, 1), but the configuration of the grid is different: We
process each row of the matrix sequentially but the
different rows are independent and can be processed
in parallel. So each thread is responsible for one row
and the grid is defined as (1,ny/num threads). The
configuration for a 12 × 12 matrix and 4 threads is
shown in Fig. 3.

6 Jonas Tölke

– LBBC: This kernel function is responsible for the in-
let and outlet boundary conditions and has the same
configuration as LBExchange.

So depending on the operations to carry out one can take
advantage of the dynamic configuration of the thread
blocks and the grid. Below an excerpt of the main loop
is given.

...
//allocate fr0,fe0,fn0,fw0,fs0,fne0,fnw0,fsw0,fse0
//and fr1,fe1,fn1,fw1,fs1,fne1,fnw1,fsw1,fse1
...
dim3 threads(num_threads, 1, 1);
dim3 grid(nx/num_threads, ny);
dim3 grid1(1, ny/num_threads);
...
for(t=0;t<=tend;t++)
{
//Set Pointers
if(t%2==0)
{
frOld=fr0;feOld=fe0;fnOld=fn0;...
frNew=fr1;feNew=fe1;fnNew=fn1;...
}
else{
frOld=fr1;feOld=fe1;fnOld=fn1;...
frNew=fr0;feNew=fe0;fnNew=fn0;...
}

//collision and propagation
LBCollProp<<< grid, threads >>> (nx, ny,
startoff, s, geoD,
frOld, feOld, fnOld, fwOld, fsOld,
fneOld, fnwOld, fswOld, fseOld,
frNew, feNew, fnNew, fwNew, fsNew,
fneNew, fnwNew, fswNew, fseNew);

//synchronize distributions across
// thread blocks
LBExchange<<< grid1, threads >>> (nx, ny,
startoff, nx/num_threads, feNew, fwNew,
fneNew, fnwNew, fswNew, fseNew);

//impose boundary conditions on
//in- and outlet
LBBC<<< grid1, threads >>> (nx, ny,
startoff, geoD,
frNew, feNew, fnNew, fwNew, fsNew,
fneNew, fnwNew, fswNew, fseNew);

//Postprocess results
...
}

}

LBCollProp :
We loop over the nodes with the indexing as described in

x

y

Fig. 2 Grid configuration for LBCollProp for a 12 × 12 ma-
trix and 4 threads: grid configuration is represented by black
lines (12 × 4), the thread partition within one block is rep-
resented by gray lines

x

y

Fig. 3 Grid configuration for LBExchange and LBBC for a
12 × 12 matrix and 4 threads: grid configuration is repre-
sented by black lines (3 × 1), the thread partition within one
block is represented by gray lines

section 3.4, so that contiguous memory access for the 1-D
arrays is possible when loading the current time step. We
combine collision and propagation and have to shift the
propagations to the right locations. Here care has to be
taken: The particle distribution functions fr, fn and fs

(the rest particle with no shift, and the particles going to
the north and south direction) can be directly written to
the device memory since they are aligned to a location in
memory at 16*sizeof(type) bytes. But for the other distri-
bution functions this is not true anymore, since they are
shifted sizeof(type) bytes to the east or west. If we write
them directly to the device memory performance breaks

Implementation of a LB kernel using CUDA 7

down and the bandwidth is restricted to 10 GB/sec. The
trick is here to allocate shared memory for the distribu-
tion functions, to propagate them using this fast shared
memory and to write back these values to the device
memory without a shift. Since shared memory is only
global within a block, distributions leaving the border
are reinjected at the opposite side and stored there. In
appendix B an excerpt of LBCollProp is given. In this
kernel function also the bounce back rule for non-slip
walls is integrated by an if-statement.

LBExchange :
After applying LBCollProp we have to exchange the val-
ues stored at the boundaries of a block (in our case this
are only the starting and ending point of one line) in
the kernel function LBExchange. Each row of the matrix
is processed sequentially using two for-loops, one for the
distributions going to the east and one for the distri-
butions going to the west. In appendix C an excerpt of
LBExchange is given.

6 Performance

In table 1 the peak performance PEAK, the theoreti-
cal bandwidth to memory interface TMBW, the achiev-
able bandwidth MMBW for simple copy throughput, the
amount of main memory MEM and the price of differ-
ent systems are given. For the peak performance we ob-
served that the theoretical and the achievable peak per-
formance are very close, if the number of multiplications
and additions are equal. This comparison shows defi-
nitely that the G80 chip offers the best PEAK/EURO
and MMBW/EURO ratio.

Performance is either limited by available memory
bandwidth or peak performance. Thus, the attainable
maximum performance P in LUPS is given as

P = min
{

MMBW

NB
,

PEAK

NF

}
(13)

where NB is the number of bytes per cell to be trans-
ferred from/to main memory and NF is the number of
floating point operations per cell. Considering the mem-
ory bandwidth as the limiting factor we find NB = (10
(read) + 9 (write)) · 4 bytes = 76 bytes per cell for
the D2Q9 model. While memory bandwidth is given by
the architecture, the average number of floating point
operations NF per cell depends on processor details and
compiler. The D2Q9 LBGK,Lin / LBGK / MRT model
has approximately 45 / 65 / 130 additions and 30 / 35
/ 30 multiplications, so we choose NF = 90 / 130 / 260
since the peak performance can only be achieved if the
processors can do an addition and multiplication simul-
taneously. In table 2 the resulting lattice updates per sec-
ond (LUPS) are given for different kernels and platforms.
The problem computed was a driven cavity discretized
on a mesh of size 20482 / 20512 (avoid cache trashing for

CPU). The number of threads for the GPU was 128. In
table 3 the exploitation of peak performance and max-
imum bandwidth of memory interface for a CPU and
GPU platform is given, where as basis for the maximum
bandwidth of memory interface MMBW was chosen. For
both kernels LBGKL and MRT the limiting factor is the
memory bandwidth, for the GPU as well as for the CPU.
For the kernel LBGKL the are very good with 51% for
the CPU and 59% for the GPU. For the more complex
kernel MRT the values are lower but nevertheless show
a very good utilization of the performance delivered by
the hardware.

Discussion of the performance gain versus coding strate-
gies
The coding strategy presented here is more difficult than
a straightforward implementation of a lattice Boltzmann
kernel. This is usually done with a separate collision and
propagation step. The best performance one can expect
theoretically with this approach is two times worse than
the approach presented here, since one has to load and
store the distributions two times per time step and the
memory bandwidth is the limiting factor. In reality the
situation is even worse: In [11] a LB kernel with sep-
arate collision and propagation step is implemented on
a ClearSpeed Advance TMAccelerator Board. It is re-
ported that the propagation step takes approximately
three times longer than the collision step. Concerning
the propagation step it is mentioned that ‘the main dis-
advantage in comparison to the collision step is, that the
distribution functions of the neighbors cannot be copied
in blocks’. So the extra coding effort for the approach
presented here pays well.

Table 2 LUPS in Mio. for different kernels and platforms

Platform LBGKL LBGK MRT

Intel Core 2 Duo (2.4 GHz) 35 25 23
nVIDIA 8800 Ultra 670 568 527

7 Example: square array of cylinders

The purpose of this section is to show that nontrivial
setups can be handled by the present approach. In Fig. 4
a square array of cylinders is shown. The solid volume
fraction θ is given with

θ = π
r2

a2
. (14)

The force F exerted on one particle is given with

F =
4 π ν ρ0 U lz

k
, (15)

8 Jonas Tölke

a

r

a

Fig. 4 square array of circles

where U is Darcy (volume averaged) velocity. An ana-
lytical expression for k is given with [21]

k = −1
2

ln θ − 0.738 + θ − 0.887 θ2 + 2.039 θ3

− 2.421 θ4 + O
(
θ5

)
.

(16)

For the numerical simulation it is possible to reduce
the domain under consideration by exploiting symme-
tries, so that only one half of one obstacle has to be con-
sidered. But this is not the goal here, we want to show
that it is possible to compute some type of porous me-
dia with the present approach efficiently. So we choose
the following setup: The domain under consideration is
square with length L=180 m. The values a=10 m and
r=2 m yielding a value of θ = 0.1256637 and 324 ob-
stacles. The viscosity was set to ν = 1/6 m2 s−1, the
density to ρ0 = 1 kg m−3 and the body force to g =
2.5E − 4 kg m−2 s−2.

For the numerical simulation we used the linear MRTL
model and used the relaxation rates given by equation 9.
The force on the obstacles is computed either numeri-
cally with equation (11) or analytically for one obstacle
with Fa = a2 lz gx. The Darcy velocity is computed by
averaging the numerical solution in all lattice sites and
the numerical value for k is computed with equation (15).

In Table 4 the relative error with respect to the solid
fraction θ and the value k for different mesh resolution
are given. The numerical solid fraction is computed by
adding all solid voxels and dividing by the total num-
ber of voxels. Due to the fact that we use only the sim-
ple bounce back boundary condition, the error in k is
strongly related to the error θerr, so that for N = 256
kerr is smaller than for N = 512. Nevertheless one can
clearly observe a convergent behavior.

In Table 5 the LUPS for different mesh sizes and
number of threads are given. The best performance is
achieved with 128 threads and large domains and is only
10 % slower than the driven cavity example. The reduc-
tion of performance for grid size 512 is related to the im-
plementation and grid configuration of LBExchange and
LBBC as shown in Fig. 3. For an efficient utilization of
the hardware at least 16 grid blocks with 64 threads have
to run in parallel, leading to an extent of the domain in
y-direction of 1024.

Table 4 Porous medium, relative errors for different mesh
sizes

mesh size θerr kerr

1282 1.88E-01 2.06E-01
2562 9.05E-04 1.73E-02
5122 1.81E-02 1.87E-02
10242 5.99E-04 5.61E-03
20482 8.70E-04 4.78E-03
30722 2.36E-04 2.37E-03

Table 5 Porous medium, LUPS in Mio. for different mesh
sizes and number of threads

number of threads 32 64 128 192 256

mesh size
5122 180 218 217 221 294
10242 281 398 391 357 360
20482 274 430 466 434 438
30722 248 413 481 452 452

8 Discussion and Outlook

The CUDA technology in combination with the approach
presented here yields a very efficient LB simulator with
a very good utilization of the performance delivered by
the hardware. One key issue is to do the propagation
via the fast shared memory and to read and to write
data from and to memory only at blocks aligned to 16 ×
sizeof(float).

The present approach can also handle domains with a
large number of obstacles, the performance degradation
D is only due to the amount of solid nodes, where no com-
putation is needed but performed in the current imple-
mentation. D can estimated by D = solid nodes / all nodes.
A more sophisticated approach would decompose the do-
main in smaller blocks and mask blocks where no com-
putation is needed.

With the CUDA technology it is also possible to ac-
cess several GPUs on one host. It is possible to handle
each GPU by a CPU thread. The communication is done
by reading and writing memory from/to the host and
GPU. First results are very promising and are subject to
a future publication.

9 Acknowledgments

Many thanks to Gerhard Wellein for the help given to
tune the CPU code.

A Orthogonal eigenvectors and Transformation
Matrix

The eigenvectors {Qk, k = 0 . . . 8} of the collision operator
are orthogonal with respect to the inner product < Qi, W, Qj >.

Implementation of a LB kernel using CUDA 9

The matrix W is diagonal and has the following weights w
on its diagonal:

w =

�
4

9
,
1

9
,
1

9
,
1

9
,
1

9
,

1

36
,

1

36
,

1

36
,

1

36

�
. (17)

The eigenvectors are given with

Q0,i = 1 (18)

Q1,i = ex,i (19)

Q2,i = ey,i (20)

Q3,i = 3 (e2
x,i + e2

y,i)− 2 c2 (21)

Q4,i = e2
x,i − e2

y,i (22)

Q5,i = ex,i ey,i (23)

Q6,i = (3(e2
x,i + e2

y,i)− 4c2) ex,i (24)

Q7,i = (3(e2
x,i + e2

y,i)− 4c2) ey,i (25)

Q8,i =
1

2
(9(e2

x,i + e2
y,i)

2 − 15c2(e2
x,i + e2

y,i) + 2c4). (26)

The Transformation matrix M is composed of the eigen-
vectors Mki = Qk,i:

M =

2
66666666666666666664

1 1 1 1 1 1 1 1 1

0 c 0 −c 0 c −c −c c

0 0 c 0 −c c c −c −c

−2 c2 c2 c2 c2 c2 4 c2 4 c2 4 c2 4 c2

0 c2 −c2 c2 −c2 0 0 0 0

0 0 0 0 0 c2 −c2 c2 −c2

0 −c3 0 c3 0 2 c3 −2 c3 −2 c3 2 c3

0 0 −c3 0 c3 2 c3 2 c3 −2 c3 −2 c3

c4 −2 c4 −2 c4 −2 c4 −2 c4 4 c4 4 c4 4 c4 4 c4

3
77777777777777777775

(27)

B Kernel function LBCollProp

__global__ void LBCollProp(int nx, int ny,
int startoff, float4 s, unsigned int* geoD,
float* fr0, float* fe0, float* fn0,
float* fw0, float* fs0, float* fne0,
float* fnw0, float* fsw0, float* fse0,
float* fr1, float* fe1, float* fn1,
float* fw1, float* fs1, float* fne1,
float* fnw1, float* fsw1, float* fse1)
{

// number of threads
int num_threads = blockDim.x;

// local thread index
int tx = threadIdx.x;

// Block index in x
int bx = blockIdx.x;

// Block index in y
int by = blockIdx.y;

// Global x-Index
int xStart = tx + bx*num_threads;

// Global y-Index
int yStart = by + startoff;

// Index k in 1D-arrays
int k = nx*yStart+xStart;

//Shared memory for propagation
__shared__ float F_OUT_E[THREAD_NUM];
__shared__ float F_OUT_W[THREAD_NUM];
__shared__ float F_OUT_NE[THREAD_NUM];
__shared__ float F_OUT_NW[THREAD_NUM];
__shared__ float F_OUT_SW[THREAD_NUM];
__shared__ float F_OUT_SE[THREAD_NUM];

...
//load fr0[k],fe0[k],fn0[k],fw0[k],fs0[k],
//fne0[k],fnw0[k],fsw0[k],fse0[k]
//to local variables F_IN_R,F_IN_E,F_IN_N,
//F_IN_W,F_IN_S,F_IN_NE,F_IN_NW,F_IN_SW,F_IN_SE
...

if(geoD[k] == GEO_FLUID)
{

//collision:
//modify F_IN_R,F_IN_E,...,F_IN_SE
...

}
else if(geoD[k] == GEO_SOLID)
{

//bounce back:
//modify F_IN_R,F_IN_E,...,F_IN_SE
...

}

//Propagation using shared memory for
//distributions having a shift
//in east or west direction
if(tx==0)
{

F_OUT_E [tx+1]=F_IN_E;
F_OUT_NE[tx+1]=F_IN_NE;
F_OUT_SE[tx+1]=F_IN_SE;

//store distribution leaving
//the domain across the west border
F_OUT_W [num_threads-1]=F_IN_W;
F_OUT_NW[num_threads-1]=F_IN_NW;
F_OUT_SW[num_threads-1]=F_IN_SW;

}
else if(tx==num_threads-1)
{

//store distribution leaving
//the domain across the east border
F_OUT_E [0]=F_IN_E;
F_OUT_NE[0]=F_IN_NE;
F_OUT_SE[0]=F_IN_SE;

F_OUT_W [tx-1]=F_IN_W;
F_OUT_NW[tx-1]=F_IN_NW;
F_OUT_SW[tx-1]=F_IN_SW;

}
else{

F_OUT_E [tx+1]=F_IN_E;
F_OUT_NE[tx+1]=F_IN_NE;
F_OUT_SE[tx+1]=F_IN_SE;

10 Jonas Tölke

F_OUT_W [tx-1]=F_IN_W;
F_OUT_NW[tx-1]=F_IN_NW;
F_OUT_SW[tx-1]=F_IN_SW;

}

// synchronize threads
__syncthreads();

// write data back to device memory
fr1[k]=F_IN_R;
fe1[k]=F_OUT_E[tx];
fw1[k]=F_OUT_W[tx];

k = nx*(yStart+1) + xStart;
fn1[k]=F_IN_N;
fne1[k]=F_OUT_NE[tx];
fnw1[k]=F_OUT_NW[tx];

k = nx*(yStart-1) + xStart;
fs1[k]=F_IN_S;
fsw1[k]=F_OUT_SW[tx];
fse1[k]=F_OUT_SE[tx];

}

C Kernel function LBExchange

__global__ void LBExchange(int nx, int ny,
int Startoff, int nbx, float* fe1, float* fw1,
float* fne1, float* fnw1, float* fsw1, float* fse1)
{
//number of elements of one thread block in LBCollProp
int num_threads = THREAD_NUM;

//number of threads in this function
int num_threads1 = blockDim.x;

// Block index y
int by = blockIdx.y;

// local thread index
int tx = threadIdx.x;

int bx;
int xStart, yStart;
int xStartW, xTargetW;
int xStartE, xTargetE;
int kStartW, kTargetW;
int kStartE, kTargetE;

for(bx=0; bx<nbx ;bx++)
{
xStart = bx*num_threads;
xStartW = xStart+2*num_threads-1;
xTargetW = xStartW-num_threads;
yStart = by*num_threads1 + Startoff + tx;
kStartW = nx*yStart+xStartW;
kTargetW = nx*yStart+xTargetW;

fw1 [kTargetW] = fw1[kStartW];
fnw1[kTargetW] = fnw1[kStartW];
fsw1[kTargetW] = fsw1[kStartW];

}

for(bx=nbx-1; bx>=0 ;bx--)
{
xStart = bx*num_threads;
xStartE = xStart;

xTargetE = xStartE+num_threads;
yStart = by*num_threads1 + Startoff + tx;
kStartE = nx*yStart+xStartE;
kTargetE = nx*yStart+xTargetE;

fe1 [kTargetE] = fe1[kStartE];
fne1[kTargetE] = fne1[kStartE];
fse1[kTargetE] = fse1[kStartE];
}

}

References

1. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltz-
mann equation: theory and applications. Phys. Rep. 222,
3, 147–197 (1992)

2. Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse
matrix solvers on the GPU: conjugate gradients and
multigrid. ACM Trans. Graph. (SIGGRAPH) 22(3),
917–924 (2003)

3. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian,
K., Houston, M., Hanrahan, P.: Brook for GPUs: Stream
Computing on Graphics Hardware. ACM Trans. Graph.
(SIGGRAPH), to appear (2004)

4. Chen, S., Doolen, G.: Lattice Boltzmann method for fluid
flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

5. Chu, N., Tai, C.L.: Moxi: Real-time ink dispersion in ab-
sorbent paper. ACM Transactions on Graphics 24(3)
(2005)

6. d’Humières, D.: Generalized lattice-Boltzmann equa-
tions. In: B.D. Shizgal, D.P. Weave (eds.) Rarefied Gas
Dynamics: Theory and Simulations, Prog. Astronaut.
Aeronaut., vol. 159, pp. 450–458. AIAA, Washington DC
(1992)

7. d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand,
P., Luo, L.S.: Multiple-relaxation-time lattice Boltzmann
models in three-dimensions. Philo. Trans. R. Soc. Lond.
A 360, 437–451 (2002)

8. Fan, Z., Qiu, F., Kaufman, A.E., Yoakum-Stover, S.: Gpu
cluster for high performance computing. In: Proceedings
of ACM/IEEE Supercomputing Conference 2004, pp. 47–
59 (2004)

9. Frisch, U., d’Humires, D., Hasslacher, B., Lallemand, P.,
Pomeau, Y., Rivet, J.P.: Lattice gas hydrodynamics in
two and three dimensions. Complex Systems 1 pp. 75–
136 (1987)

10. Ginzburg, I., d’Humières, D.: Multireflection boundary
conditions for lattice Boltzmann models. Phys. Rev. E
68, 066,614 (2003)

11. Heuveline, V., Weiß, J.P.: A Parallel Implementation
of a Lattice Boltzmann Method on the ClearSpeed
AdvanceTM Accelerator Board. Tech. rep., Rechenzen-
trum Universität Karlsruhe (2007). Http://www.rz.uni-
karlsruhe.de/download/RZ-TR-2007-1.pdf

12. Inamuro, T., Yoshino, M., Ogino, F.: Accuarcy of the
lattice boltzmann method for small knudsen number with
finite reynolds number. Phys. Fluids 9, 3535 (1997)

13. Junk, M., Klar, A., Luo, L.: Asymptotic analysis of the
lattice boltzmann equation. Journal Comp. Phys. 210,
676 (2005)

14. Krüger, J., Westermann, R.: Linear algebra operators
for GPU implementation of numerical algorithms. ACM
Trans. Graph. (SIGGRAPH) 22(3), 908–916 (2003)

15. Lallemand, P., Luo, L.S.: Theory of the lattice Boltz-
mann method: Dispersion, dissipation, isotropy, Galilean
invariance, and stability. Phys. Rev. E 61(6), 6546–6562
(2000)

Implementation of a LB kernel using CUDA 11

16. Li, W., Wei, X., Kaufman, A.: Implementing Lattice
Boltzmann Computation on Graphics Hardware. The
Visual Computer 19(7-8), 444–456 (2003)

17. Nguyen, N.Q., Ladd, A.: Sedimentation of hard-sphere
suspensions at low Reynolds number. J. Fluid Mech.
525, 73–104 (2004)

18. NVIDIA CUDA Programming Guide. URL
http://developer.download.nvidia.com

19. Qian, Y.H., d’Humières, D., Lallemand, P.: Lattice BGK
models for Navier-Stokes equation. Europhys. Lett. 17,
479–484 (1992)

20. Qiu, F., Zhao, Y., Fan, Z., Wei, X., Lorenz, H., Wang, J.,
Yoakum-Stover, S., Kaufman, A.E., Mueller, K.: Disper-
sion simulation and visualization for urban security. In:
IEEE Visualization, pp. 553–560 (2004)

21. Sangani, A.S., Acrivos, A.: Slow Flow Past Periodic Ar-
rays of Cylinders With Application to Heat-Transfer. In-
ternational Journal of Multiphase Flow 8(3), 193–206
(1982)

22. Tölke, J.: A thermal model based on the lattice Boltz-
mann method for low Mach number compressible flows.
Journal of Computational and Theoretical Nanoscience
3(4), 579–587 (2006)

23. Tutubalina, A.: 8800 gtx performance tests. URL
http://blog.lexa.ru/2007/03/08/
nvidia 8800gtx skorost chtenija tekstur.html. In Rus-
sian

24. Wei, X., Zhao, Y., Fan, Z., Li, W., Qiu, F., Yoakum-
Stover, S., Kaufman, A.: Lattice-based Flow Field Mod-
eling. IEEE Transactions on Visualization and Computer
Graphics 10(6), 719–729 (2004)

25. Wellein, G., Zeiser, T., Hager, G., Donath, S.: On the
single processor performance of simple lattice Boltzmann
kernels. Computers & Fluids 35(8-9), 910–919 (2006)

26. Wu, E., Liu, Y., Liu, X.: An improved study of real-time
fluid simulation on GPU. Comp. Anim. Virtual Worlds
15, 139–146 (2004)

27. Zhao, Y., Han, Y., Fan, Z., Qiu, F., Kuo, Y.C., Kauf-
man, A., Mueller, K.: Visual simulation of heat shim-
mering and mirage. IEEE Transactions on Visualization
and Computer Graphics 13(1) (2007)

28. Zhao, Y., Wang, L., Qiu, F., Kaufman, A., Mueller, K.:
Melting and Flowing in Multiphase Environments. Com-
puters & Graphics 30(4) (2006)

29. Zhu, H., Liu, X., Liu, Y., Wu, E.: Simulation of misci-
ble binary mixtures based on lattice Boltzmann method.
Comp. Anim. Virtual Worlds 17, 403–410 (2006)

12 Jonas Tölke

Table 1 Peak performance, memory bandwidth and price of different platforms

Platform PEAK[Gflop/s] TMBW[GB/s] MMBW[GB/s] MEM [MB] price [Euro]

Intel Core 2 Duo (2.4 GHz) 38.4 8.5 5.2 2 000 1 000
NEC SX-8R A (8 CPUs) 281.0 563.0 - 128 000 -
nVIDIA 8800 Ultra 410.0 104 87 768 500

Table 3 Exploitation of peak performance and maximum bandwidth of memory interface for different platforms

Platform PEAK-LBGKL MMBW-LBGKL PEAK-MRT MMBW-MRT

Intel Core 2 Duo (2.4 GHz) 8 % 51 % 16 % 34 %
nVIDIA 8800 Ultra 15 % 59 % 33 % 46 %

