
Towards three-dimensional teraflop CFD
computing on a desktop PC using graphics

hardware

J. Tölke a,∗, M. Krafczyk a,

aInstitute for Computational Modeling in Civil Engineering, TU Braunschweig

Abstract

A very efficient implementation of a Lattice Boltzmann (LB) kernel in three di-
mensions on a graphical processing unit (GPU) using the Compute Unified Device
Architecture (CUDA) interface developed by nVIDIA is presented. By exploiting
the explicit parallelism offered by the graphics hardware we obtain an efficiency gain
of up to two orders of magitude with respect to the computational performance of
a PC. A non-trivial example shows the performance of the lattice Boltzmann im-
plementation, which is based on a D3Q13 model that is being described in detail.
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1 Introduction

A Graphical Processing Unit (GPU) is specifically designed to be extremely
fast at processing large graphics data sets (e.g., polygons and pixels) for ren-
dering tasks. The use of the GPU to accelerate non-graphics computations has
drawn much attention [1–3]. This is due to the fact that the computational
power of GPUs has exceeded that of PC-based CPUs by more than one order
of magnitude while being available for a comparable price. For example the re-
cently released nVIDIA GeForce 8800 Ultra has been observed to deliver over
4×1011 single precision (32-bit) floating operations per second (400 GFLOPS)
[4]. In comparison, the theoretical peak performance of the Intel Core 2 Duo
3.0 GHz is only 24 GFLOPS for double precision and 48 GFLOPS for single
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precision. Also the bandwidth to the memory interface is much larger: Mem-
ory bandwidth for desktop computers ranges from 5.3 to 10.7 GigaByte per
second (GB/s), whereas the nVIDIA GeForce 8800 Ultra delivers up to 104
GB/s.

Due to the facts that Lattice Boltzmann methods (LBM) operate on a finite
difference grid, are explicit in nature and usually require only next neighbor
interaction they are very suitable for the implementation on GPUs. In [5] the
computation of the LBM is accelerated on general-purpose graphics hardware
by mapping the primary LB variables to 2D textures and the Boltzmann equa-
tions completely to rasterization and frame buffer operations. A speedup of at
least one order of magnitude could be achieved compared to a implementation
on a CPU. Applications for LB simulations in graphics hardware range from
real-time ink dispersion in absorbent paper [6], dispersion simulation and vi-
sualization for urban security [7], simulation of soap bubbles [8], simulation
of miscible binary mixtures [9], melting and flowing in multiphase environ-
ment [10] and visual simulation of heat shimmering and mirage [11]. Even
GPU clusters have been assembled for general-purpose computations [12] and
LB simulations have been performed. An implementation of a Navier-Stokes
solver on a GPU can be found in [13]. Nevertheless all these applications use
a programming style close to the hardware especially developed for graphics
applications.

The remainder of the paper is organized as follows: In section 2 the graph-
ics hardware is shortly sketched, in section 3 the Compute Unified Device
Architecture (CUDA) programming technology is presented, in section 4 the
D3Q13 LB model is described, in section 5 the implementation of this model
using CUDA is described, section 6 gives an example, section 7 discusses the
performance of the approach and section 8 concludes the paper and gives a
short outlook.

2 nVIDIA - G80: the parallel stream processor

The G80-chip on a nVIDIA 8800 Ultra graphics card has 16 multiproces-
sors with 8 processors each, for a total of 128 processors. These are general-
ized floating-point processors capable of operating on 8-,16- and 32-bit integer
types and 16- and 32-bit floating point types. Each multiprocessor has a mem-
ory of 16 KB size that is shared by the processors within the multiprocessor.
Access to a location in this shared memory has a latency of only 2 clock
cycles allowing fast nonlocal operations. The processors are clocked (Shader
Clock) at 1.6GHz, giving the GeForce 8800 Ultra a tremendous amount of
floating-point processing power. Assuming 2 floating point operations per cy-
cle (one addition and multiplication) we obtain 2 × 1.6 × 128 GFLOPS =
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410 GFLOPS. Each multiprocessor has a Single Instruction, Multiple Data
architecture (SIMD).

The multiprocessors are connected by a crossbar-style switch to six Render
Output Unit (ROP) partitions. Each ROP partition has its own L2 cache and
an interface to device memory that is 64-bits wide. In total, that gives the
G80 a 384-bit path to memory with a clock frequency of 1100 MHz. This
results in a theoretical memory bandwidth of 384/8 × 1.1 × 2 (DDR) GB/s
= 104 GB/s. In practice 80 % of this value can be achieved for simple copy
throughput. The transfer rates over the PCI-E bus are dependent on the sys-
tem configuration. Assuming PCI-Ex16, the transfer speed is 1.5 GB/s for
pageable memory and 3.0 GB/s for pinned memory. The available amount of
memory is 768 MegaByte (MB). The nVIDIA Quadro GPUs deliver mem-
ory up to 2 GigaByte (GB). There is also new product line called ’NVIDIA
Tesla’ (also based on the G80 chip) especially designed for high performance
computing .

In table 1 the theoretical peak performance PEAK, the theoretical bandwidth
to memory interface MBW, the amount of main memory MEM and the price
of different systems are given. The theoretical bandwidth for copy throughput
assuming a write allocate strategy for the scalar CPU architectures (additional
cache line load is performed on a write miss) is given in brackets. This com-
parison definitely shows that the G80 chip offers an outstanding PEAK/EURO
and MBW/EURO ratio.

Table 1
Peak performance, memory bandwidth and price of different platforms

Platform PEAK
[GFLOPS]

MBW
[GB/s]

MEM
[MB]

price
[Euro]

Intel Core 2 Duo (3.0
GHz)

48.0 10.7 (7.0) 4 000 1 000

NEC SX-8R A (Single
node, 8 CPUs)

281.0 563.0 128 000 expensive

nVIDIA 8800 Ultra
(shader: 1.6Ghz)

410.0 104.0 768 500

3 nVIDIA CUDA: The GPU programming technology

3.1 Introduction

The nVIDIA CUDA technology is a fundamentally new computing architec-
ture that enables the GPU to solve complex computational problems. CUDA
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(Compute Unified Device Architecture) technology gives computationally in-
tensive applications access to the processing power of nVIDIA graphics pro-
cessing units (GPUs) through a new programming interface. Software devel-
opment is strongly simplified by using the standard C language. The CUDA
Toolkit is a complete software development solution for programming CUDA-
enabled GPUs. The Toolkit includes standard FFT and BLAS libraries, a
C-compiler for the nVIDIA GPU and a runtime driver. CUDA technology is
currently supported on Linux and Microsoft Windows XP operating systems.

3.2 Application Programming Interface (API)

In this subsection only a small subset of the API needed for the LB kernel
is discussed following [4]. The GPU is viewed as a compute device capable of
executing a very high number of threads in parallel. It operates as a coproces-
sor to the main CPU called host. Data-parallel, compute-intensive portions
of applications running on the host are transferred to the device by using a
function that is executed on the device as many different threads. Both the
host and the device maintain their own DRAM, referred to as host memory
and device memory, respectively. One can copy data from one DRAM to the
other through optimized API calls that utilize the devices high-performance
Direct Memory Access (DMA) engines.

Thread Block A thread block is a batch of threads that can cooperate
together by efficiently sharing data through some fast shared memory and
synchronizing their execution to coordinate memory accesses by specifying
synchronization points in the kernel. Each thread is identified by its thread
ID, which is the thread number within the block. An application can also
specify a block as a three-dimensional array and identify each thread using
a 3-component index. The layout of a block is specified in a function call to
the device by a variable type dim3, which contains three integers defining the
extensions in x,y,z. If one integer is not specified, it is set to one. Inside the
function the built-in global variable blockDim contains the dimensions of the
block. The built-in global variable threadIdx is of type uint3 (also a type
composed of three integers) and contains the thread index within the block.
To exploit the hardware efficiently a thread block should contain at least 64
threads and not more than 512.

Grid of Thread Blocks There is a limited maximum number of threads
(in the current CUDA Version 512) that a block can contain. This number
can be smaller due to the amount of local and shared memory used. However,
blocks that execute the same kernel can be batched together into a grid of
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Fig. 1. A 2× 3 grid of thread blocks of size (3, 1, 1)

blocks, so that the total number of threads that can be launched in a single
kernel invocation is much larger. This comes at the expense of reduced thread
cooperation, because threads in different thread blocks from the same grid
cannot communicate and synchronize with each other. Each block is identified
by its block ID. An application can also specify a grid as a two-dimensional
array and identify each block using a 2-component index. The layout of a grid
is specified in a function call to the device by a variable type dim3, which
contains two integers defining the extensions in x,y. The third integer is set
to one. Inside the function the built-in global variable gridDim contains the
dimensions of the grid. The built-in global variable blockIdx is of type uint3
and contains the block index within the grid. The different blocks of a grid can
run in parallel and to exploit the hardware efficiently at least 16 blocks per
grid should be used. For future devices this value may increase. The present
upper limit for the number of blocks is 65535 in each dimension. In Fig. 1 a
2× 3 grid of thread blocks of size (3, 1, 1) and their indexing is shown.

Function Type Qualifiers

• The device qualifier declares a function that is executed on the device
and callable from the device only.

• The global qualifier declares a function as being a kernel. Such a function
is executed on the device and callable from the host only. Any call to a
global function must specify the execution configuration for that call.
The execution configuration defines the dimension of the grid and blocks
that will be used to execute the function on the device. It is specified by
inserting an expression of the form <<< Dg, Db>>> between the function
name and the parenthesized argument list, where Dg is of type dim3 and
specifies the dimension and size of the grid, such that Dg.x × Dg.y equals
the number of blocks being launched. Db is also of type dim3 and specifies
the dimension and size of each block, such that Db.x × Db.y × Db.z equals
the number of threads per block;
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• The host qualifier declares a function that is executed on the host and
callable from the host only.

Variable Type Qualifiers

• The device qualifier declares a variable that resides in global memory
space of the device. It is accessible from all the threads within the grid
(with a latency of about 200-300 clock cycles) and from the host through
the runtime library.

• The shared qualifier declares a variable that resides in the shared memory
space of a thread block and is only accessible from all the threads within
the block (with a latency of only 2 clock cycles).

Memory management

• cudaError t cudaMalloc(void** devPtr, size t count) allocates count
bytes of linear memory on the device and returns in *devPtr a pointer to
the allocated memory. The allocated memory is suitably aligned for any
kind of variable.

• cudaError t cudaMemcpy(void* dst, const void* src, size t count,
enum cudaMemcpyKind kind) copies count bytes from the memory area
pointed to by src to the memory area pointed to by dst, where kind is
either
· cudaMemcpyHostToHost,
· cudaMemcpyHostToDevice,
· cudaMemcpyDeviceToHost,
· cudaMemcpyDeviceToDevice
and specifies the direction of the copy.

Both functions can only be called on the host.

Synchronization The function void syncthreads() synchronizes all threads
in a block. Once all threads have reached this point, execution resumes nor-
mally. This function can only be used in device functions.

3.3 Memory Bandwidth

The effective bandwidth of each memory space depends significantly on the
memory access pattern. Since device memory is of much higher latency and
lower bandwidth than on-chip shared memory, device memory accesses should
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be arranged so that simultaneous memory accesses of one block can be coa-
lesced into a single contiguous, aligned memory access.

This means that each block thread number N should access element N at
byte addess BaseAddress+sizeof(type)*N, where N starts from zero and
sizeof(type) is equal to 4, 8, 16.” Moreover BaseAddress should be aligned
to 16*sizeof(type) bytes, otherwise memory bandwidth performance breaks
down to about 10 GB/sec [14]. Any address of a variable residing in global
memory or returned by one of the memory allocation routines is always aligned
to satisfy the memory alignment constraint.

4 Lattice Boltzmann method: The D3Q13 model

The Lattice Boltzmann method is a numerical method to solve the Navier-
Stokes equations [15–17], where mass fractions (with unit kg m−3) propagate
and collide on a regular grid. In the following discussion the font bold sans serif
(x) represents a three-dimensional vector in space and the font bold with serif
f a b-dimensional vector, where b is the number of microscopic velocities. We
use the D3Q13 model [18] which is probably the model with the minimal set
of velocities in three dimensions to obtain the correct Navier-Stokes equation.
It is also a very efficient model in terms of memory consumption, since due
to a decoupling in two independent lattices it is possible to delete half of the
nodes. It has the following microscopic velocities,

{ei, i = 0, . . . , 12} = {er, ene, esw, ese, enw, ete, ebw, ebe, etw, etn, ebs, ebn, ets, }

=






0 c −c c −c c −c c −c 0 0 0 0

0 c −c −c c 0 0 0 0 c −c c −c

0 0 0 0 0 c −c −c c c −c −c c






(1)

generating a space-filling lattice with a nodal distance h = c∆t, where c is a
constant microscopic velocity and ∆t the time step. The lattice Boltzmann
equation is

fi(t + ∆t, x + ei∆t) = fi(t, x) + Ωi, i = 0, . . . , 12 (2)

where fi are mass fractions with unit kg m−3 propagating with microscopic
velocity ei and Ω is the collision operator. The microscopic velocities or the
mass fractions are also labeled depending on their direction rest, northeast,
southwest, southeast, northwest, topeast, bottomwest, bottomeast, topwest,
topnorth, bottomsouth, bottomnorth, topsouth as fr, fne, fsw, fse, fnw, fte,
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fbw, fbe, ftw, ftn, fbs, fbn, fts. The collision operator is given by

Ω = M−1 k, (3)

where M is the transformation matrix given in appendix A and k is the change
of mass fractions in moment space.

The moments m of the mass fractions are given by

m = Mf := (ρ, ρ0ux, ρ0uy, ρ0uz, e, pxx, pww, pxy, pyz, pxz, hx, hy, hz) , (4)

where the moment ρ of zero order is the density and the moments (ρ0ux, ρ0uy, ρ0uz)
of first order are the momentum. The moments e, pxx, pww, pxy, pyz, pxz of sec-
ond order are related to the viscous stress tensor by

σxx = 2 ν ρ0
4

3
(2 u2

x − u2
y − u2

z − pxx/ρ0)/(8ν + c2 ∆t)

σyy = 2 ν ρ0
2

3
(4 u2

y − 2 u2
x − 2 u2

z + pxx/ρ0 − 3 pww/ρ0)/(8ν + c2 ∆t)

σzz = 2 ν ρ0
2

3
(4 u2

z − 2 u2
x − 2 u2

y + pxx/ρ0 + 3 pww/ρ0)/(8ν + c2 ∆t)

σxy = ν ρ0 (ux uy − pxy/ρ0)/(ν + c2 ∆t / 4)

σyz = ν ρ0 (uy uz − pyz/ρ0)/(ν + c2 ∆t / 4)

σxz = ν ρ0 (ux uz − pxz/ρ0)/(ν + c2 ∆t / 4)

(5)

The moments hx, hy, hz of third order are related to second derivates of the
flow field.

The vector k is given by

k0 = 0, k1 = 0 k2 = 0, k3 = 0

k4 = ke = −se

(
e− (−11

2
c2 ρ +

13

2
ρ0 (u2

x + u2
y + u2

z)
)

k5 = kxx = −sν

(
pxx − ρ0 (2 u2

x − u2
y − u2

z)
)

k6 = kww = −sν

(
pww − ρ0 (u2

y − u2
z)

)

k7 = kxy = −s′ν (pxy − ρ ux uy)

k8 = kyz = −s′ν (pyz − ρ uy uz)

k9 = kxz = −s′ν (pxz − ρ ux uz)

k10 = khx = −sh hx

k11 = khy = −sh hy

k12 = khz = −sh hz

(6)

where se, sν , s′ν , sh are relaxation rates explained in more detail below.

Performing either a Chapman-Enskog [15] or an asymptotic expansion [19,20]
of equation (2) it can be shown that the LB-Method is a scheme of first order in
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time and second order in space for the incompressible Navier-Stokes equations
in the low Mach number limit. The relaxation rates sν and s′ν are related to
the viscosity by

sν =
2

8 ν
c2 ∆t + 1

s′ν =
2

4 ν
c2 ∆t + 1

.
(7)

The collision rates se and sh are not relevant for the incompressible limit of
the Navier-Stokes equations and can be chosen in the range [0, 2] to improve
stability [21]. The optimal values for the MRT model depend on the specific
system under consideration (geometry, initial and boundary conditions) and
can not be computed in advance. A good choice is to set these values to one.

The hydrodynamic pressure is given by

p =
c2

3
ρ =

13

33
ρ0(u

2
x + u2

y + u2
z)−

2

33
e. (8)

4.1 Boundary conditions

In our implementation we mark nodes as fluid, solid or boundary condition
nodes. Solid walls and velocity boundary conditions are implemented by ap-
plying the simple bounce back rule for the mass fractions:

fi(t + ∆t, x) = fî(t, x) +
ρ0

4 c2
ei U0(x +

1

2
ei ∆t), (9)

where U0 is the prescribed velocity and fi is the incoming mass fraction and
fî the anti-parallel outgoing mass fraction (see Fig. 2). If the boundary is not
located exactly in the middle x + 1

2ei ∆t of the link i the boundary condition
is only first order accurate. For higher order boundary conditions we refer to
[22].

4.2 Forces on fixed obstacles

The force Fk acting on a boundary cut by a link k between xf and xb results
from the momentum-exchange between the mass fraction fî(t, xf ) and fi(t +
∆t, xf ) hitting the boundary [23] as shown in Fig. 2. The momentum change
can be computed by regarding the mass fraction before and after hitting the
boundary:

Fk(t + ∆t/2) = − V

∆t
ei (fi(t + ∆t, xf ) + fî(t, xf )) , (10)
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xf

xb

f (t+Ät)if (t)î

Fig. 2. Momentum transfer on fixed obstacles

where V is the volume of the unit cell. Note that for our implementation the
unit call is a rhombic dodecahedron (see section 5.1) and the volume V = 2h3.
Drag and lift forces on the whole obstacle are computed by summing up all
contributions Fk,

F =
∑

k∈C

Fk, (11)

where C is the set of all links cut by the obstacle and the sum considers only
boundary nodes xf .

5 Implementation of a Lattice Boltzmann kernel

A detailed overview of efficient implementation approaches of LB kernels for
CPUs is given in [24]. Since the architecture of the GPU is different, also
the implementation is different from a design optimized for CPUs. As GPUs
have no cache hierarchy the layout of the data structures has to be designed
to exploit the memory bandwidth. In contrast to CPU design where one has
to avoid powers of two in the leading dimension of an array to avoid cache
trashing effects, the opposite is true for the GPU. Here memory addresses
have to be aligned as discussed in section 3.3.

5.1 Memory layout for the D3Q13 model

In a simple matrix based memory layout for the D3Q13 model the mass frac-
tions are stored in a matrix m(nx, ny, nz, b) and are related to their position
in the lattice through x = h × i, y = h × j, z = h × k, where i ∈ [1, nx],
j ∈ [1, ny] and k ∈ [1, nz] are the indices. In the propagation step the mass
fractions are shifted in the 13 directions (fr is not shifted but copied to the
same location) and stored in a second matrix at the right location. The full
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lattice is composed of cubes generating a space filling comb. The basic cube
has coordinates (± 1/2, ±1/2, ±1/2) h.

A careful inspection of the connection graph of the lattice reveals that the
lattice can be split into two totally independent sublattices consisting of the
nodes with i + j + k even for one and odd for the other [18]. Geometrical
transformations or the possibility to run two simulations simultaneously on
the grid to remove this staggered invariant are proposed in [18].

Here we propose another option not using a matrix layout. It is possible to
just use only the lattice composed of the nodes with i+ j +k even. Using only
half of the nodes the basic unit cell becomes a rhombic dodecahedron shown
in Fig. 3. It is a Catalan solid with 12 rhombic faces, 24 edges and 14 vertices.
The vertices are given by (± 1,± 1,± 1) h, (± 1, 0, 0)h, (0, ± 1, 0)h, (0,
0, ± 1)h. The rhombic dodecahedra honeycomb (see Fig. 4) is a space-filling
tessellation (or honeycomb) in Euclidean 3-space. It is the Voronoi diagram
of the face-centered cubic sphere-packing, which is believed to be the densest
possible packing of identical spheres in ordinary space. The honeycomb is cell-
transitive, face-transitive and edge-transitive meaning that all cells, faces and
edges are the same. It is not vertex-transitive, as it has two kinds of vertices.
The vertices with the obtuse rhombic face angles have 4 cells. The vertices
with the acute rhombic face angles have 6 cells. The volume of the rhombic
dodecahedron is given by

V =
16

9

√
3a3, (12)

where a is the length of one edge. For the unit cell a =
√

3 (h/2)2 and therefore

V = 2 h3.

For the D3Q13 LB model we have 13 mass fractions which have to be shifted
in 13 different directions. We store the mass fractions in 2 × 13 = 26 1-D
arrays, one set for the current time step and one set for the new time step.
This layout corresponds to the propagation optimized layout discussed in [24].
The element m = nx× (ny× k + j) + i in each of the 1-D arrays is related to
the position in space (x, y, z) by

a =






0 if j even and k even

0 if j odd and k odd

1 if j odd and k even

1 if j even and k odd

x = h (a + 2 i)

y = h j

z = h k

(13)

The values nx, ny and nz define the extensions of the grid. Note that x =
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Fig. 3. Basic Unit cell for D3Q13 model: rhombic dodecahedron

h (a + 2 i) and thus we have half the nodes in contrast to the full lattice.

The addressing scheme for the 1D-vector and the position in space (x,y,z) is
computed in C-code as

int m = nx*(ny*k + j) + i;
float x = h * ( (j&0x1)^(k&0x1) + i*2 );
float y = h * j;
float z = h * k;

The position mm in the 1D-vector of the neighbor x + ∆t ex,l, y + ∆t ey,l, z +
∆t ez,l can be computed by

int xi = ( j&0x1)^(k&0x1) + i*2;
int knew = k+ez[l];
int jnew = j+ey[l];
int a = ( jnew&0x1)^( knew&0x1);
int inew = (xi+ex[l]-a)/2;
int mm = nx*(ny*(knew) + jnew) + inew;

12



      

Fig. 4. rhombic dodecahedra honeycomb

5.2 Single precision versus double precision

The precision of float (32-bit) is 8 digits and of double (64-bit) is 16 digits.
So mass- and momentum conservation is locally only guaranteed up to this
precision. We experienced no problems in terms of accuracy for the simulations
we did run up to now. In [25] the flow through a generic porous 2D-medium
(square array of 324 circles) was computed up to a relative error of 2.4E-03
using single precision and simple bounce back. Problems reported with single
precision and LB simulations [26] were often due to the fact that the original
compressible model was used and the mass fractions had a constant part of
O(1) related to the constant part of the density and a fluctuating part of
O(h2) related to the pressure. This was numerically very unsatisfactory. With
the incompressible model [27] also used in our work, this deficiency is removed.

The stability is not as high as for simulations using double precision, but the
breakdown is close in terms of the achievable Reynolds-number. The authors
believe that a careful implementation of the collision operator is more useful
to improve stability than just to switch to double precision.
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Fig. 5. Mapping of physical lattice to computational grid

5.3 Implementation using CUDA

To obtain a good memory throughput we load and store the mass fractions in
complete lines along the x-direction. One block is thus configured to contain all
the nodes along one line in x-direction as threads. This restricts the extension
of the x-direction to nx ∈ [16, 256], where nx should be a multiple of 16. This
restriction comes from the fact that a certain number of threads is needed to
run efficiently and that a maximum number of threads (512) is supported. The
restrictions to 256 threads in our case comes from the fact that only a certain
amount of registers, local and shared memory is available and that restricts
the number of threads to this value. Note that due to the layout proposed in
section 5.1 the lattice extension in x-direction is 2× nx× h.

The grid of thread blocks is defined by the number of nodes ny and nz along
the y- and z-direction. The number of blocks in the grid should be larger than
16 to run efficiently. Note that despite the restrictions a very flexible setup is
possible. For a more flexible setup in 2 dimensions we refer to [25]. In Fig. 5
the setup for a domain defined by nx = 3, ny = 3, nz = 3 is shown. The
quadratic tubes indicate one block of threads.

To allow a uniform propagation without incorporation of if-statements a ghost
layer in y- and z-direction is added and the value of startoffy=1 startoffz=1.
In the subsequent examples nnx, nny and nnz defines the domain and nx=nnx,
ny=nny+startoffy and nz=nnz+startoffz the grid including ghost layers.
This allows an efficient shift of the mass fractions in the propagation direc-
tion. We don’t need a ghost layer in x-direction since we use shared memory
buffers for the propagation.
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In the time loop the kernel function LBKernel is responsible for collision and
propagation. The layout of each block is (num threads, 1, 1) and the grid
of blocks is defined as (ny,nz). Below an excerpt of the main loop is given.

...
//mass fractions
typedef struct Distri{

float* f[13];
} Distributions;
...
//allocate Distributions d0,d1
...

// setup execution parameters for one thread block
dim3 threads(nnx, 1, 1);
// configuration of the grid of blocks
dim3 grid(nny, nnz);

...
//time loop
for(t=0;t<=tend;t++){

//Switch pointers
if(t%2==0){

dold=d0;
dnew=d1;

}
else{

dold=d1;
dnew=d0;

}
// execute the kernel: Collision+Propagation
LBKernel<<< grid, threads >>> (nx, ny, geoD, dold, dnew);
if(t%tpost ==0){

//Copy to CPU, Postprocessing
}

}

LBKernel:
We loop over the nodes in x-direction indexing as given by equation (13), so
that contiguous memory access is possible when loading the current time step.
We combine collision and propagation and have to shift the propagations to
the correct locations. Here care has to be taken: The mass fractions fr, ftn,
fbs, fbn, fts (the fraction with no shift, and the fractions not going to the
east or west direction) can be directly written to the device memory since
they are aligned to a location in memory at 16*sizeof(type) bytes. For the
other mass fractions this is not always true anymore, since they are shifted
sizeof(type) bytes to the east or west for some configurations. Writing them
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X

Y

Z
Fig. 6. Propagation of mass fractions fne in north-east direction using shared mem-
ory: circles represent lattice as hold in device memory, squares represent shared
memory. First the mass fractions are written to shared memory and then trans-
ferred back uniformly to device memory

directly to the device memory leads to a substantial performance breakdown
and the bandwidth is restricted to 10 GB/sec. To avoid this problem, we
allocate shared memory for the mass fractions, propagate them using this fast
memory and write back these values to the device memory uniformly without
a shift. In Fig. 6 the propagation is shown for the mass fractions fne in north-
east direction in a plane z =const. Note that the x-rows are staggered due to
the topology and geometry of the D3Q13-model. The lowest and the middle
row propagate the mass fractions represented by black arrows to the shared
memory location represented by squares. The lowest row propagates the mass
fraction without shift in memory location, the middle with a shift in east
direction. The shared memory is then transferred back to device memory as
indicated by the gray arrows. Note that for the lowest and then every second
row shared memory is not needed, but we did implement it to not disturb the
code with additional if-statements. In appendix B an excerpt of LBKernel is
given. In this kernel function also the bounce back rule for non-slip nodes or
the velocity boundary condition is integrated by an if-statement.

6 Example: moving sphere in a circular pipe

An approximate solution [28] for the dimensionless drag coefficient for a sphere
moving with speed U0 in an infinite fluid is given by

cd =
24

Re
(1 + 0.15 Re0.687). (14)

The Reynolds-number is defined as

Re =
U0 d

ν
, (15)
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Fig. 7. Moving sphere in a pipe, setup for numerical simulation

where d is the diameter of the sphere and ν the kinematic viscosity. The drag
force Fd exerted on the sphere is

Fd = cd
1

2
ρ0 U2

0 π
d2

4
. (16)

The relative error of approximation (14) is ± 5 % for Re < 800.

For a moving sphere in an infinite pipe the influence of the wall can be taken
into account by [29]

cd,W50 = cd +
24

Re
(K − 1), (17)

where K is given by [30]

K =
1− 0.75857λ5

1− 2.1050 λ + 2.0865 λ3 − 1.7068 λ5 + 0.72603λ6
(18)

and λ = d
D is the ratio of the diameters of the sphere and the pipe. Approx-

imation (17) has a relative error of± 5 % for Re < 50 and λ < 0.6. In the
range 100 < Re < 800 the dimensionless drag coefficient is given by

cd,W800 = kf cd, (19)

where kf is given by [31]

kf =
1

1− 1.6 λ1.6
. (20)

Approximation (19) has a relative error of ± 6 % for λ < 0.6.

We choose a coordinate system moving with the sphere, leading to a setup
shown in Fig. 7. No-slip conditions are imposed on the boundary of the sphere
and velocity boundary conditions on the inflow, outflow and on the boundary
of the pipe.
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6.1 Moving sphere in a pipe at Re=1

We simulate the moving sphere for a low Reynolds-number with three differ-
ent resolutions. We increase mesh resolution and simultaneously reduce the
Mach number by lowering u0. The force on the sphere is computed using equa-
tion (11) and the drag coefficient is obtained from equation (16). The reference
values for the drag coefficient is cd,W = 144.48. In Table 2 the results are given.
The criterion for a steady state was that the fourth digit in cd,W did not change
anymore. The number of iterations to reach steady state is given as # iter, the
number of nodes of the whole domain as # nodes=nx× ny × nz and the de-
vice memory used on the GPU is given as Mem. The performance P is defined
in section 7 and given in Mega-Lattice updates per second (MLUPS) where
as basis # nodes is used. Mega-Fluid-Lattice updates per second (MFLUPS)
represents a value, where only the fluid nodes are counted. The difference
between MLUPS and MFLUPS is approximately π/4 in this case (ratio of
circle to square), since the nodes outside the pipe and inside the sphere are
irrelevant.

One can clearly observe a convergent behavior for cd,W with increasing mesh
resolution.

Table 2
Moving sphere at Re=1, relative errors and other values for different mesh sizes
domain size u0 [m s−1] ν [m2 s−1] D [m] # iter [-] cd,W [-] Rel. Err. [-]

322 × 128 0.004 0.0595 14.88 40 000 152.2 5.3 %

642 × 256 0.002 0.0605 30.24 80 000 146.6 1.5 %

1282 × 512 0.001 0.0610 60.96 260 000 145.3 0.6 %

domain size nx× ny × nz P [MLUPS] P [MFLUPS] # nodes [-] Mem [MB]

322 × 128 16×32×128 239 188 65 536 23

642 × 256 32×64×256 386 303 524 288 118

1282 × 512 64×128×512 582 457 4 194 304 693

6.2 Moving sphere in a pipe at Re=10, 50, 100, 200, 300 and 400

We use a grid resolution of 1282×512 to simulate the moving sphere at different
Reynolds-numbers. The diameter D of the sphere is 60.95 m and the velocity
boundary condition is u0 = 0.02 m s−1. In Table 3 the Reynolds-number Re,
the kinematic viscosity ν, the wall clock time WCT in seconds, the number
of time steps #iter, the numerical drag coefficient cd,W , the reference drag
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coefficient cd,W,Ref., the ratio of pressure drag to viscous drag and the relative
error are given. The pressure and viscous drag was computed by two methods:

A For the pressure drag we initialized the fluid nodes close to the boundary
with the equilibrium moments, where the density was the computed one
and the velocity set to zero. Then we applied the momentum transfer using
equation 2.

B We did a numerical integration over the sphere: We computed the pressure
and the elements of the stress tensor using equations (5) and (8) of the
node closest to a dS-Element of the sphere. Then we did a projection of the
pressure tensor using the normal of dS.

A) and B) yielded results which differ at most by 10 %, in Table 3 the values
for method A) are given.

For Re = 300 and Re = 400 the flow field becomes instationary. In Fig. 8
streamlines for the stationary case Re=200 and for the instationary cases
Re=300 and 400 are shown, where for the instationary cases a snapshot of
the flow field at the end of the simulation has been used to generate the
streamlines. In Fig. 9 the drag coefficient over time is given, where Tref is
1000 sec and corresponds to 1000 time steps. The amplitude of the oscillation
is roughly 1 % of the average value for Re=300. In Fig. 10 the amplitude of
the oscillation over the Strouhal number St = f ×D /u0 is given, where f is
the frequency. For Re=300 a peak at St=0.2 and for the case Re=400 a peak
at St=0.03 and a more or less pronounced peak at St=0.22 can be observed.

In an advanced experimental setup [32] for a sphere in uniform flow a value
of Re≈300 for the onset of vortex shedding and a shedding frequency in the
range of 0.15-0.18 was observed. In numerical studies of the flow around a
sphere [33,34], where the blockage ration was small, a value Re=280 for the
onset of vortex shedding was observed. Also the amplitude of the oscillation
of the drag coefficient was roughly 1 % of the average value for Re=300.

7 Performance

The performance of the Lattice Boltzmann method can be measured in Lattice
Updates Per Second (LUPS) and is either limited by available memory band-
width or peak performance. A rough estimation of the attainable maximum
performance P in LUPS is given by

P = min

{
MBW

NB
,

PEAK

NF

}

(21)
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Table 3
Moving sphere at different Re, grid resolution 1282 × 512

Re [-] ν [m2 s−1] WCT [s] # iter[-] cd,W [-] cd,W,Ref.[-] p.drag
v.drag Rel. Err. [-]

10 0.121920 106 15 000 14.74 15.84 0.93 6.9 %

50 0.024384 415 59 000 3.697 3.876 1.15 4.6 %

100 0.012192 520 74 000 2.380 2.312 1.43 2.9 %

200 0.006096 774 110 000 1.679 1.706 1.90 1.6 %

300 0.004064 2100 1 300 000 1.440 2 1.448 2.35 0.6 %

400 0.003048 2800 1 400 000 1.305 3 1.296 2.82 0.7 %
1 instationary flow field, time required to reach oscillatory state from initial
uniform flow field (no disturbance imposed)
2 average value, t = 280 . . . 2000 Tref
3 average value, t = 200 . . . 3000 Tref

where NB is the number of bytes per cell and time step to be transferred
from/to main memory and NF is the number of floating point operations per
cell and time step. Considering the memory bandwidth as the limiting factor
we find NB = ( 14 (read) + 13 (write) ) × 4 bytes = 108 bytes per cell for
the D3Q13 model. While memory bandwidth is given by the architecture, the
average number NF of floating point operations (FLOP) per cell depends on
processor details, compiler and the implementation. We assume for the D3Q13
model 150 additions and 30 multiplications and choose NF = (30 + 30) + 2×
(150 − 30) = 300FLOP since the peak performance can only be achieved if
the processors can do an addition and multiplication simultaneously.

In Table 4 the Performance P in LUPS for different mesh sizes for a driven
cavity problem is given. As discussed in section 5.3 the value of nx defines
the number of threads and (ny, nz) the grid of thread blocks. The best per-
formance is achieved with 64 threads and large domains. A reduction of the
performance is observed for a small number of threads and small domains.
Taking the value P=592 MLUPS as a reference value the exploitation of the
performance delivered by the hardware ( 44 % of the peak performance and
61 % (!) of the maximum memory bandwidth) is very satisfactory and shows
a good balance between floating point computing power and memory band-
width. In [24] very efficient CPU-implementations of the D3Q19 model are
discussed. We give some values for comparison and for details we refer to [24].
Note that the data transfer volume is for the D3Q19-model (double precision
implementation) is 2×19/13 = 2.92 times higher. The performance in MLUPS
was for Intel Xeon (3.4GHz):P=4.8, Intel Itanium 2 (1.4GHz): P=7.6 and for the
vector machine NEC SX6+ (565MHz):P=41.3.
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Table 4
LUPS in Mio. for different mesh sizes and number of threads

ny × nz \ nx 16 32 64 80 128 192 256

32 ×32 231 392 570 446 523 444 476

64 ×64 239 378 565 472 546 454 483

128×128 230 384 592 478 549 452 483

8 Summary and Outlook

The CUDA technology in combination with the computational approach pre-
sented here yields a very efficient LB simulator in terms of the price to perfor-
mance ratio. One key issue is to do the propagation via the fast shared memory
and to read and to write data from and to memory only at blocks aligned to
16 × sizeof(float). The present approach can also handle domains with a
large number of obstacles, the performance degradation D is only due to the
amount of solid nodes, where no computation is needed but performed in the
current implementation. D can be estimated by D = solid nodes / all nodes. A
more sophisticated approach would decompose the domain in smaller blocks
and mask blocks where no computation is needed.

The current implementation could be extended to other discretization stencils
such as D3Q15 and D3Q19, but due to the fact that the memory consumption
will more than double these models are of limited use for present GPUs.

With the CUDA technology it is also possible to access several GPUs on one
host allowing for teraflop simulations on a desktop PC. It is possible to handle
each GPU by a CPU thread. The communication is done by reading and
writing memory from/to the host and GPU. First results are very promising
and are subject to a future publication.
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A Orthogonal eigenvectors and Transformation Matrix

The eigenvectors {Qk, k = 0 . . . 12} of the collision operator are orthogonal
with respect to the inner product < Qi, Qj > and are given by

Q0,i = 1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (A.1)

Q1,i = ex,i = c · (0, 1,−1, 1,−1, 1,−1, 1,−1, 0, 0, 0, 0) (A.2)

Q2,i = ey,i = c · (0, 1,−1,−1, 1, 0, 0, 0, 0, 1,−1, 1,−1) (A.3)

Q3,i = ez,i = c · (0, 0, 0, 0, 0, 1,−1,−1, 1, 1,−1,−1, 1) (A.4)

Q4,i =
13

2
e2 − 12 c2 = c2 · (−12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (A.5)

Q5,i = 3 e2
x,i − e2 = c2 · (0, 1, 1, 1, 1, 1, 1, 1, 1,−2,−2,−2,−2]) (A.6)

Q6,i = e2
y,i − e2

z,i = c2 · (0, 1, 1, 1, 1,−1,−1,−1,−1, 0, 0, 0, 0) (A.7)

Q7,i = ex,i ey,i = c2 · (0, 1, 1,−1,−1, 0, 0, 0, 0, 0, 0, 0, 0) (A.8)

Q8,i = ey,i ez,i = c2 · (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,−1,−1) (A.9)

Q9,i = ex,i ez,i = c2 · (0, 0, 0, 0, 0, 1, 1,−1,−1, 0, 0, 0, 0) (A.10)

Q10,i = ex,i (e
2
y,i − e2

z,i) = c3 · (0, 1,−1, 1,−1,−1, 1,−1, 1, 0, 0, 0, 0) (A.11)

Q11,i = ey,i (e
2
z,i − e2

x,i) = c3 · (0,−1, 1, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1) (A.12)

Q12,i = ez,i (e
2
x,i − e2

y,i) = c3 · (0, 0, 0, 0, 0, 1,−1,−1, 1,−1, 1, 1,−1) . (A.13)

where e2 = (e2
x,i +e2

y,i +e2
z,i). The transformation matrix M is composed of the

eigenvectors Mki = Qk,i.

B Kernel function LBKernel

__global__ void LBKernel( int nx, int ny, unsigned int* geoD,
Distributions dold, Distributions dnew)

{
//geoD: integer matrix indicating the node type
// (fluid,solid or boundary condition)
//dold: ’Old’ distribution functions
//dnew: ’New’ distribution functions

// Thread index
int tx = threadIdx.x;

// Block index x in the grid
int bx = blockIdx.x;

// Block index y in the grid
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int by = blockIdx.y;

// Global x-Index
int x = tx;

// Global y-Index
int y = bx + startoffy;

// Global z-Index
int z = by + startoffz;

unsigned int GEO;
float f_R,f_NE,f_SW,f_SE,f_NW,f_TE,f_BW,

f_BE,f_TW,f_TN,f_BS,f_BN,f_TS;

// Shared memory for propagation in direction with east/west parts
__shared__ float fo_SE[THREAD_NUM+1];
__shared__ float fo_NE[THREAD_NUM+1];
__shared__ float fo_NW[THREAD_NUM+1];
__shared__ float fo_SW[THREAD_NUM+1];
__shared__ float fo_BE[THREAD_NUM+1];
__shared__ float fo_TE[THREAD_NUM+1];
__shared__ float fo_BW[THREAD_NUM+1];
__shared__ float fo_TW[THREAD_NUM+1];

// Index in 1d-vector
int k = nx*(ny*z + y) + x;

// Load data from device memory to local memory
GEO = geoD[k];
f_R = (dold.f[ dirR])[k];
f_NE = (dold.f[dirNE])[k];
f_SW = (dold.f[dirSW])[k];
f_SE = (dold.f[dirSE])[k];
f_NW = (dold.f[dirNW])[k];
f_TE = (dold.f[dirTE])[k];
f_BW = (dold.f[dirBW])[k];
f_BE = (dold.f[dirBE])[k];
f_TW = (dold.f[dirTW])[k];
f_TN = (dold.f[dirTN])[k];
f_BS = (dold.f[dirBS])[k];
f_BN = (dold.f[dirBN])[k];
f_TS = (dold.f[dirTS])[k];

if(GEO == GEO_FLUID){
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//Collision
...
}
else if(GEO == GEO_SOLID){
//Bounce Back
...
}
else if(GEO == GEO_INLET){
//Velocity Boundary Condition
...
}
// Propagation via shared memory for mass fractions
// with East or West part.
// Due to the memory layout the shift in East direction is
// either zero or one and vice versa for the West direction
//
int shiftE = ((y-startoffy)&0x1) ^ ((z-startoffz)&0x1);
int shiftW = 0x1 & (~shiftE);

int txE = tx+shiftE;
int txW = tx-shiftW;

fo_SE[txE] = f_SE;
fo_NE[txE] = f_NE;
fo_NW[txW+1] = f_NW;
fo_SW[txW+1] = f_SW;
fo_BE[txE] = f_BE;
fo_TE[txE] = f_TE;
fo_BW[txW+1] = f_BW;
fo_TW[txW+1] = f_TW;

__syncthreads();

// write data to device memory
//Propagation by computing correct index
int nxny = nx*ny;
int kn = k + nx;
int ks = k - nx;
int kt = k + nxny;
int kb = k - nxny;
int kts = k + nxny -nx;
int ktn = k + nxny +nx;
int kbs = k - nxny -nx;
int kbn = k - nxny +nx;
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(dnew.f[ dirR])[k] = f_R;
(dnew.f[ dirNE])[kn] = fo_NE[tx];
(dnew.f[ dirNW])[kn] = fo_NW[tx+1];
(dnew.f[ dirSE])[ks] = fo_SE[tx];
(dnew.f[ dirSW])[ks] = fo_SW[tx+1];
(dnew.f[ dirTE])[kt] = fo_TE[tx];
(dnew.f[ dirTW])[kt] = fo_TW[tx+1];
(dnew.f[ dirBE])[kb] = fo_BE[tx];
(dnew.f[ dirBW])[kb] = fo_BW[tx+1];
(dnew.f[ dirTS])[kts] = f_TS;
(dnew.f[ dirTN])[ktn] = f_TN;
(dnew.f[ dirBS])[kbs] = f_BS;
(dnew.f[ dirBN])[kbn] = f_BN;

}
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Fig. 8. Streamlines for Re=200, 300 and 400
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Fig. 9. Drag coefficient for Re=300 and 400 over time
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