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Abstract

Weather and climate prediction software has enjoyed the benefits of expo-
nentially increasing processor power for almost 50 years. Even with the advent
of large-scale parallelism in weather models, much of the performance increase
has come from increasing processor speed rather than increased parallelism.
This free ride is nearly over. Recent results also indicate that simply increas-
ing the use of large-scale parallelism will prove ineffective for many scenarios.
We present an alternative method of scaling model performance by exploiting
emerging architectures using the fine-grain parallelism once used in vector ma-
chines. The paper shows the promise of this approach by demonstrating a 20×
speedup for a computationally intensive portion of the Weather Research and
Forecast (WRF) model on an NVIDIA 8800 GTX Graphics Processing Unit
(GPU). We expect an overall 1.3× speedup from this change alone.

1 Introduction

Exponentially increasing processor power has fueled fifty years of continuous im-
provement in weather and climate prediction through larger and longer simulations,
higher-resolutions, and more sophisticated treatment of physical processes. Even with
the advent of large-scale parallelism in the 1990s, much of the performance increase
has come from the underlying processor improvements. No developer intervention
was necessary. However, this free ride is over [3]. To continue the historic rate of
application performance increase into petascale (1015 floating point operations per
second), developers must adapt software models.

Large Clusters A popular proposal is to expose orders of magnitude more paral-
lelism in weather and climate models to leverage clusters with hundreds or thousands
of nodes. A recent Gordon Bell finalist weather simulation [9] used a record 15-
thousand IBM Blue Gene processors but only by greatly increasing problem size to
2-billion cells covering an entire hemisphere at a 5km resolution, yielding only weak
performance scaling. Ultra-large simulations stress many other aspects of the sys-
tem, including output bandwidth, analysis, and visualization. Moreover, Ultra-large
problem sizes are ineffective for applications that need strong-scaling, e.g. real-time
forecasting and climate, where faster time-to-solution is paramount.

To continue performance scaling, architectures must exploit abundant fine-grained
parallelism in weather and climate models, not just large-scale coarse-grain paral-
lelism. This paper shows that low-cost commodity graphics coprocessors (GPUs) can
improve the performance of a widely used community weather model.
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GPU-based Computing Today, graphics processing units (GPUs) are a low-cost,
low-power (watts per flop), very high performance alternative to conventional micro-
processors. For example, NVIDIA’s 8800 GTX with a theoretical peak 520 GFLOPS
and dissipating 150 Watts at a cost of $500. This is an order of magnitude faster than
CPUs, and GPU performance has been increasing at a rate of 2.5× to 3.0× annually,
compared with 1.4× CPUs [7].

GPUs exploit data-parallelism in graphics code, allowing GPU manufacturers to:

. . . spend their growing transistor budgets on additional parallel execution
units; the effect of this is additional floating point operations per clock.
In contrast, the Pentium4 is designed to execute a sequential program.
Adding math units to the processor is unlikely to improve performance
since there is not enough parallelism detectable in the instruction stream
to keep these extra units occupied [4].

Weather and climate models have much fine-grained data parallelism, which was ex-
ploited by vector processors [10] and the SIMD supercomputers of the 1990s [5,6]. To-
day, most compute-cycles for weather modeling come from large microprocessor-based
clusters, which are unable to exploit parallelism much finer than one subdomain, i.e.,
the geographic region(s) allocated to one processor. Fine-grain parallelism is wasted
because CPUs lack the memory-bandwidth and functional units needed to exploit it.

Graphics processors, like earlier SIMD systems, are designed to exploit massive
fine-grain parallelism. Unlike old SIMD systems, all memory is not assumed to be
low-latency. GPUs introduce layers of concurrency between data-parallel threads
with fast context switching to hide memory latency. GPUs also have large, dedicated,
read/write and read-only memories to provide the bandwidth needed for high floating-
point compute rates. Using GPUs for numerical weather prediction (NWP) raises
several questions.

• Which weather model modules involve the most computation?
• How much speedup can GPU co-processing deliver?
• What are the prospects for improving overall model performance?
• How easy is developing a GPU-accelerated module?
• Can modules be efficient and yet portable?
• What hardware and software improvements are needed to fully exploit GPUs

and other coprocessors for NWP?

In this work, we begin to answer these questions by selecting a computationally
intensive module from the Weather Research and Forecast (WRF) model [11], adapt-
ing this Fortran model to run on NVIDIA’s 8800 GTX GPU using their Compute
Unified Device Architecture (CUDA), and then assessing performance improvement
for the module itself and the projected overall performance improvement. We com-
pare these improvements to overheads such as data transfer and re-engineering costs.
We also uncover and explore common domain-specific program abstractions that may
be exploited in the form of directives or language constructs to simplify the task of
converting large sections of the model to run on the GPU.
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2 Approach

To demonstrate the promise of GPU computing for NWP, we ported a computation-
ally intensive WRF physics module, then validated, benchmarked, and compared its
GPU performance to that of the original module on 3 conventional processors.

The Weather Research and Forecast model is a state-of-the-art non-hydro-
static NWP model maintained and supported to the community by the National
Center for Atmospheric Research. First released in 2000, WRF is now the most
widely used community weather forecast and research model in the world 1. WRF
consists of a computational fluid dynamics (CFD) core using explicit finite-difference
approximation plus physics modules to represent atmospheric processes, all single
(32-bit) floating point precision. Physics is roughly half the computational cost.

WRF Single Moment 5-tracer (WSM5) [8] microphysics represents condensation,
fallout of various types of precipitation, and related thermodynamic effects of latent
heat release. WSM5 is only 0.4 percent of the WRF source code but consumes a
quarter of total run time on a single processor.

A WRF domain is a geographic region of interest partitioned in a 2-dimensional
grid parallel to the ground. The 2D grid has multiple levels, corresponding to various
vertical heights in the atmosphere. For each grid point, WSM5 computation proceeds
along the vertical column for that point. The number of cells in a vertical column
corresponds to the number of levels in the grid. The memory footprint is large with
40 single-precision floating point variables per grid cell. Depending on the state of
the atmosphere, WSM5 involves an average 2400 floating point multiply-equivalent
operations per cell per invocation.

The NVIDIA GPU. The target GPU for this investigation is the NVIDIA 8800
GTX, which comprises 128 SIMD “stream processors” operating at 1.35 GHz. Theo-
retical peak is 520 gigaflops [1]. Eight physical stream processors work together as a
SIMD unit called a multiprocessor and there are 16 multiprocessors in the 8800 GTX.
All multiprocessors have access to 768 MB of multiported DDR SDRAM. Accesses to
this device memory are high-latency operations taking dozens of cycles. Each multi-
processor has a local 16 kB thread-shared “scratchpad” memory, with a 2-cycle access
time, and a local register file.

Stream processors are not programmed directly; rather, one writes a CUDA kernel
for the GPU. Each kernel consists of a collection of threads arranged into blocks and
grids. Each grid is a group of blocks, each block is a group of threads. Conceptually,
each block is bound to a virtual multiprocessor; the hardware will time-share the mul-
tiprocessor amongst blocks provided that the hardware has enough memory resources
to satisfy all the block requirements within the physical multiprocessor. In general,
the more threads per block, the better the performance because the hardware can
hide memory latencies. The only caveat is that a kernel should have enough blocks
to simultaneously utilize all the multiprocessors in a given NVIDIA GPU, 16 in the
case of the 8800 GTX. Generally, one should have at least 32 threads per block and
16 blocks for a minimum of 512 threads. However, hundreds of threads per block are
typically recommended [2].

1See http:www.wrf-model.org
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1 DO j = jts, jte
2 DO k = kts, kte
3 DO i = its, ite
4 IF (t(i,k,j) .GT. t0c) THEN
5 Q(i,k,j) = T(i,k,j) * DEN( i,k,j )
6 ENDIF
7 ENDDO
8 ENDDO
9 ENDDO

(a) Fortran

1 //_def_ arg ikj:q,t,den
2 //_def_ copy_up_memory ikj:q
3 [...]
4 for (k = kps-1; k <= kpe-1; k++) {
5 if (t[k] > t0c) {
6 q[k] = t[k] * den[k] ;
7 }
8 }
9 [...]

10 //_def_ copy_down_memory ikj:q

(b) CUDA C

Figure 1: Simplified code fragment for WSM5.

For WSM5, a thread-per-column decomposition yields 4,118 threads for the Storm
of the Century (SOC) workload 2. Unfortunately, GPU memory size works against
large numbers of threads per block. The memory footprint for a column in the SOC
benchmark is 4320 bytes per column. With 32 threads per block, we have only 16
kB per block, or 3 columns worth of space available to a thread. Data that does not
fit in the fast shared memory must be stored in the slower DRAM device memory.
Therefore, care must be taken allocating shared memory for arrays that are reused
the most. Section 3 describes how these limitations affect performance.

Code translation. WSM5 is a 1500 line Fortran90 module in the WRF community
software distribution. We manually converted the WSM5 module into a CUDA kernel
using a few prototype language extensions that we developed to aid in the process of
managing the GPU memories. Rewriting in C (CUDA is C-based) requires converting
globally addressed multi-dimensional arrays to locally addressed single-dimensional
arrays with explicitly managed indexing. Furthermore, arrays need to be declared
and indexed differently depending on whether they are arguments or local arrays and
whether they are accessed from device memory or from thread-shared memory. Only
a few of the three-dimensional arrays accessed by WSM5 will fit into thread-shared
memory. Furthermore, movement of data into and out of this memory is managed
explicitly 3. A manual analysis of definition-use chains in the WSM5 code indicated
that arrays storing various moisture tracers were most reused so these were copied
into shared memory at the beginning and then copied back out into device memory
at the end of the kernel. We made no further attempt to optimize memory accesses;
this could be a fruitful avenue of research.

The task of converting the code from Fortran to CUDA C was simplified with the
development of several simple directives and a simple Perl-based preprocessor/translator
to help define dimensionality and memory residency of an array. Subsequently, the
programmer can write purely column-oriented CUDA C code using only the verti-
cal index (k) to index the array. Figure 1(a) shows a (simplified) section of original
Fortran and Figure 1(b) shows the corresponding C using our directives.

The def directives tell the preprocessor that all three arrays are three-dimensional

2See Section 3 for a description of this workload.
3Arguably, this explicit management is a performance advantage compared to CPU caches
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1 __shared__ float * q_s; int k;
2 [...]
3 for(k=kps-1;k<kpe;k++) {
4 q_s[S3(ti,k,tj)]=q[D3(ti,k,tj)]; }
5
6 [...]
7 for ( k = kps-1 ; k <= kpe-1 ; k++ ) {
8 if ( t[k] > t0c ) {
9 q_s[S3(ti,k,tj)] =

10 t[D3(ti,k,tj)] * den[D3(ti,k,tj)] ;
11 }
12 }
13 [...]
14 for(k=kps-1;k<kpe;k++) {
15 q[D3(ti,k,tj)]=q_s[S3(ti,k,tj)]; }

Figure 2: WSM5 CUDA C Code after Processing Directives.

and passed in as arguments to the routine, but that q should be copied into fast
thread-memory at the beginning of the routine and copied back at the end. All ar-
ray references need only the vertical index k, even though q is being accessed from
thread-shared memory while t and den are stored in device memory.

The CUDA compiler sees code similar to that in Figure 2. S3 and D3 are macros
that expand into indexing expressions for the three-dimensional arrays in shared and
device memory, respectively. The copy up memory directive expands to declare and
copy into q s, a shared memory version of q. The copy down memory directive ex-
pands into a reverse copy of q at the end. The macros, directives, and source trans-
lation preprocessor used in this work are part of a more comprehensive application
domain-specific set of translations under development.

3 Results

This section presents initial validation and benchmark results comparing the original
WSM5 code with the GPU version. Development and testing was done standalone
(outside the WRF model) on a Linux workstation with a 2.80 GHz Pentium-D CPU
in a Linux and an NVIDIA 8800 GTX GPU coprocessor. The original code was
compiled with gfortran/gcc 4.3.0 and -O3 optimization. The GPU implementation
was compiled using the NVIDIA nvcc compiler (release 1.0, V0.2.1221). The original
code was also compiled and benchmarked on an IBM Power5 1.9 GHz processor using
XLF (IBM Fortran) version 10.1 with -O4 -qhot optimization and an Intel Xeon 3.0
GHz quad core under Mac OS/X using pgf90 (Portland Group Inc.) version 7.0-7
64-bit and with -O2 -fast -fastsse optimization.

Storm of the Century Test-case We chose the well-tested, relatively small, and
easy to work with Eastern United States January 2000 ”Storm of the Century” (SOC).
The SOC domain is 115-thousand cells covering an atmospheric grid 71 by 58 cells at a
horizontal resolution of 30km and with 27 vertical levels. At the WSM5 microphysics
call-site, the WRF model was modified to save off the WSM5 input arguments to
files at each time step and was then run for a short time after a reasonable spin-up
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Figure 3: Performance on Pentium, Power5, Xeon, and GPU.

period to generate ten sample sets of input. We built a standalone WSM5 test driver
to validate and debug the CUDA C code as well as benchmark against the original
Fortran code. For the tests, this driver read one input data set and then invoked the
original WSM5 routine or the GPU implementation.

Validation We took considerable care to ensure the GPU implementation produced
correct output with respect to the original WSM5 routine. For NWP, bit-for-bit
floating point agreement never occurs between different processors, compilers, and
libraries. The perturbation for the NVIDIA GPU was even more significant [2]:

• Square root and division are non-standard-compliant,
• Dynamically configurable rounding mode is not supported,
• Denormalized source operands are treated as zero, and
• Underflow is flushed to zero.

Validation and debugging was performed using difference plots – color contour
plots of the point-wise arithmetic difference between output from the original code
and the GPU implementation. Small differences in a “snow”-like random distribution
pattern were assumed to be from round-off. Validating using double (64-bit) floating
point precision with the CUDA emulator on the Pentium host was also helpful.

Performance Calls to the WSM5 implementations were measured using UNIX
gettimeofday.4 A second set of timers measured data host-GPU transfer costs. Six
sets of runs were conducted to measure cost of WSM5 on the CPUs and the GPU.
On the host Pentium, average cost per invocation was was 0.935 seconds (σ = 1.932
milliseconds). The Power5 averaged 0.213 seconds (σ = 1.458 milliseconds) and the
Xeon, 0.236 seconds (σ = 1.315 milliseconds). On the NVIDIA GPU, average cost

4Timers around the GPU implementation also included a call to cudaThreadSynchronize after
the call to WSM5.
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Figure 4: WSM5 potential temperature from the original (left) and GPU code (right).

was 0.042 seconds (σ = 0.074 milliseconds); 0.055 seconds (σ = 0.266 milliseconds)
including data transfer between the host and GPU memories. Figure 3 shows the
average floating point rates for the Pentium-D, Power5, Xeon and GPU, both with
and without data transfer overhead. Data transfer cost was measured only on the
host Pentium D system and would likely differ on other systems. The operation count
was obtained using the hardware performance monitor on the Power5 system.

At this writing, almost no effort has gone into optimizing GPU performance. Nev-
ertheless, initial results are extremely encouraging, showing a better than 17× GPU
speed advantage relative to the host CPU, including data transfer. Meteorological
output from the CPU and GPU versions was visually indistinguishable (Figure 4).

4 Conclusion

For numerical weather prediction and climate modeling, exclusive focus on large-scale
parallelism on clusters neglects vast quantities of fine-grained parallelism. This limits
NWP and climate to weak-scaling, hindering science that requires faster turn-around
for fixed-size simulations. This paper shows that low-cost/high flops-per-watt GPUs
can exploit fine-grain parallelism and help restore strong scaling for scientific problems
at petascale.

With this work, we have demonstrated that a modest investment in programming
effort for GPUs yields an order of magnitude performance improvement for a small
but performance critical module the widely used WRF weather model. Only about
one percent of GPU performance was realized but these are initial results; little opti-
mization effort has been put into GPU code. Despite this limitation, porting just this
one package still provides significant overall benefit: the 5× to 20× increase in WSM5
performance translates into 1.25× - 1.3× increase in total application performance
(Amdahl’s law limits the total increase to 1.3×). A 1.25× improvement in model
performance from a few months effort is rare.

Though 1.3× is clearly not enough to support strong scaling, the initial result
is still promising. Moving more computation into the GPU will yield equivalent
performance from smaller more efficient clusters. Furthermore, planned improvements
in GPU speed, host proximity, and programmability will allow WRF and other highly
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data-parallel weather and climate models to execute almost entirely on the GPU.
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