-

‘J

High Level Languages for GPUs
Overview

Mike Houston
Stanford University

(c]XGPU

High Level Shading Languages

e “Old School”
- Use shading language along with OpenGL/DirectX

e Cg, HLSL, & OpenGL Shading Language
- C0Q:

e http://www.nvidia.com/cg

- HLSL:

e http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/directx9_c/directx/graphics/reference/highlevellanguageshad
ers.asp

- OpenGL Shading Language:

e http://www.3dlabs.com/support/developer/ogl2/whitepapers/i
ndex.html

[4LGPU

Compilers: CGC & FXC

e HLSL and Cg are syntactically almost identical
- Exception: Cg 1.3 allows shader “interfaces”, unsized arrays

e Command line compilers

- Microsoft’s fxc.exe
e Compiles to DirectX vertex and pixel shader assembly only
e fxc /Tps_3 0 myshader.hlsl
- NVIDIA’s cgc.exe
e Compiles to everything
e cgc -profile ps_3 0 myshader.cg
- Can generate very different assembly!
e Driver will recompile code

- Compliance may vary

[4LGPU

GPGPU Languages

e Why do you want them?

- Make programming GPUs easier!
e Don’t need to know OpenGL, DirectX, or ATI/NV extensions
e Simplify common operations
e Focus on the algorithm, not on the implementation

e Accelerator
Microsoft Research
http://research.microsoft.com/research/downloads/

e Brook
Stanford University
http://graphics.stanford.edu/projects/brookgpu

 CTM
ATI/AMD
http://ati.amd.com/companyinfo/researcher/documents.html

e CUDA
NVIDIA
http://www.nvidia.com/object/cuda.html

e Peakstream

http://www.peakstreaminc.com

e RapidMind

Commercial follow-on to Sh
http://www.rapidmind.net

[4LGPU

Microsoft Research Accelerator Project

e GPGPU programming using data parallelism

e Presents a data-parallel library to the
programmer.
- Simple, high-level set of operations

e Library just-in-time compiles to GPU pixel
shaders or CPU code.
- Runs on top of .NET

Data-parallel array library

e Explicit conversions between data-parallel
arrays and normal arrays

e Functional: each operation produces a new
data-parallel array.

e Eliminate certain operations on arrays to
make them data-parallel

- No aliasing, pointer arithmetic, individual element
access

O:

' &

]

txtry[...

pix_shdrs()

)
ol

Q)
2
al
O

—

—

library_calls()

Array,| ...

Data-parallel array types

]

txtry[...

e iy e e,

W e ﬁ rﬁ._...
/ﬁ/x alemplreH /19ALQ/IdY Wﬁ

N

Explicit conversion

f.,/r,,w.. iﬁf

R

pix_shdrs()

library calls()

]

txtry| ...

e R
R A S R

®_®>>U _|_\._®>_.‘_ﬁ__n_< N
T eee--——-—

N

T

]

Array,[...

Functional style

_ _
£ ook
X 7 X
S d
<
(7))
. _
> P
G o
%ﬂ/ﬁﬂﬂ T —
N 7/ " e %
\ \ rompIeL /1 N e
A J1BALA/Y L
o R RN V/Z
2 TN N
T X < F
S 2 a0
A <

Types of operations

10

A NN RS AR i, #..;......

empJleH /1aA1La/IdV zﬁ///f/fm
5 7 A I ———
al

]

library calls()
]

]

DPArray,| ...
Array,[...

Operations

e Array creation
e Element-wise arithmetic operations: +, *, -, etc.

e Element-wise boolean operations: and, or, >, <
etc.

e Type conversions: integer to float, etc.
e Reductions/scans: sum, product, max, etc.

« Transformations: expand, pad, shift, gather,
scatter, etc.

e Basic linear algebra: inner product, outer
product.

[4LGPU

Example: 2-D convolution

float[,] Blur(float[,] array, float[] kernel) {
using (DFPA parallelArray = new DFPA(array)) {

FPA resultX = new FPA(0.0f, parallelArray.Shape);

for (inti=0; i< kernel.Length; i++) { // Convolve in X direction.
resultX += parallelArray.Shift(0,i) * kernel[i];

}

FPA resultY = new FPA(0.0f, parallelArray.Shape);

for (inti=0; i< kernel.Length; i++) { // Convolve in Y direction.
resultY += resultX.Shift(i,0) * kernelli];

}

using (DFPA result = resultY.Eval()) {
float[,] resultArray;
result. ToArray(out resultArray);
return resultArray;

}
}
}

[4LGPU

Just-in-time compiler

Programmer Accelerator DirectX

v

C# code building up
an expression using

Build Expression Dag

the Accelerator API

'

I
I
I
I
I
I Transfer Data
|, Initialize Pipeline
I Triangle Setup

Build Canonical

Shader Dag *

Coercion to normal Compile Pixel Shader

C# array

Render

L

Run Shader Dag [|

|
|
|
Optimize Shader Dag | *
|
|
}
|

e i &

Avallability and more information

e Binary version of Accelerator available for download
- http://research.microsoft.com/downloads
e Available for non-commercial use
- Meant to support research community use.
- Licensing for commercial use possible.
e Includes documentation and a few samples
e Runs on Microsoft.NET, most GPUs shipping since 2002.
e More information:

- ASPLOS 2006 “Accelerator: using data-parallelism to program GPUSs
for general-purpose uses”, David Tarditi, Sidd Puri, Jose Oglesby

- http://research.microsoft.com/act

Brook: General Purpose Streaming Language

e Stream programming model
- GPU = streaming coprocessor

e C with stream extensions

e Cross platform
- ATl & NVIDIA
- OpenGL, DirectX, CTM
- Windows & Linux

Streams

e Collection of records requiring similar

computation
- particle positions, voxels, FEM cell, ...

Ray r<200>;
float3 velocityfield<100,100,100>;

e Similar to arrays, but...
- Index operations disallowed: position[i]
- read/write stream operators
streamRead (r, r _ptr);

streamWrite (velocityfield, v ptr);

[4LGPU

Kernels

e Functions applied to streams
- similar to for_all construct
- no dependencies between stream elements

kernel void foo (float a<>, float b<>,
out float result<>) {
result = a + b;

}

float a<100>;
Tloat b<100>;
float c<100>;

foo(a,b,c);

for (1=0; 1<100; i1++)
c[1] = a[1]+b[1];

[4LGPU

Kernels

e Kernel arguments
- Input/output streams

kernel void foo (float a<>,
float b<>,
out float result<>) {
result = a + b;

18

Kernels

e Kernel arguments

- gather streams

kernel void foo (...,

a = array[i];

}

float array[]) {

19

Kernels

e Kernel arguments

- Iterator streams

kernel void foo (...

a=n+ b;

}

, 1ter float n<>) {

20

Kernels

e Kernel arguments

- constant parameters

kernel void foo (...

a=c¢+ b;

}

, float c) {

21

Reductions

e Compute single value from a stream
- associative operations only

reduce void sum (float a<>,
reduce float r<>)

r += a;
+
float a<100>;
float r;
r = a[0];
sum(a,r); for (int i=1; i<100; i++)
r += a[i];

[4LGPU

Reductions

e Multi-dimension reductions
- stream “‘shape” differences resolved by reduce

function

reduce void sum (float a<>,

r += a;

}

float a<20>;
float r;

sum(a,r);

[4LGPU

reduce float r<>)

o B

for (int 1=0; 1<5; 1++)
rin] = af1*4];
for (int j=1; j<4; j++)
rfi] += a[1*4 + j];

23

Stream Repeat & Stride

e Kernel arguments of different shape
- resolved by repeat and stride

kernel void foo (float a<>, float b<>,

Float a<20>;

Float b<5>;

float c<10>;

foo(a,b,c);

out float result<>);

foo(a[0],
foo(al2],
foo(al4],
foo(al6],
foo(a] 8]}

foo(a[le,

foo(al12]}

foo(a[14]:

foo(a[16]

foo(a[18].

b
b
b
b
b
b
b
b
b
b

[
[
[
[
L

0]
0l
1]
1
21,
2],
31
3]
4]
4]

OO0O0000000O0

o S o pum e o e sy

OCO~NOOIRAWNEFO
e e e] e e e e el bl
oo\ o\ o\ o A

Matrix Vector Multiply

kernel void mul (float a<>, float b<>,
out float result<>) {
result = a*b;

}

reduce void sum (float a<>,
reduce float result<>) {

result += a;

}

float matrix<20,10>;
float vector<l, 10>;
float tempmv<20,10>;
float result<20, 1>;

mul (matrix,vector,tempmv) ;
sum(tempmv, result);

25

Matrix Vector Multiply

kernel void mul (float a<>, float b<>,
out float result<>) {
result = a*b;

}

reduce void sum (float a<>,
reduce float result<>) {

result += a;

}

float matrix<20,10>;
float vector<l, 10>;
float tempmv<20,10>;
float result<20, 1>;

mul (matrix,vector,tempmv) ;
sum(tempmv, result);

sum

26

Runtime

e Accessing stream data for graphics aps

- Brook runtime api available in C++ code
- autogenerated .hpp files for brook code

brook::initialize("dx9", (void*)device);

// Create streams
fluidStream0 = stream::create<float4>(kFluidSize, kFluidSize);
normalStream stream: :create<float3>(kFluidSize, kFluidSize);

// Get a handle to the texture being used by

// the normal stream as a backing store

normalTexture = (IDirect3DTexture9d*)
normalStream->getlndexedFieldRenderData(0) ;

// Call the simulation kernel
simulationKernel (fluidStreamO, fluidStream0, controlConstant,
fluidStreaml);

[]4GPU 2

Applications

ray-tracer
SAXEY_
SGEMV
fft edge detect linear algebra

[4LGPU

Brook for GPUs

e Release v0.3 available on Sourceforge
- CVS tree *much* more up to date

e Project Page
- http://graphics.stanford.edu/projects/brook

e Source

- http://www.sourceforge.net/projects/brook
e Paper:
Brook for GPUs: Stream Computing on Graphics Hardware

lan Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon
Fatahalian, Mike Houston, Pat Hanrahan

R T
“ 4
- .‘

CTM - AMD

e See Justin Hensley’s talk to follow
e \Web information

- http://ati.amd.com/companyinfo/researcher/documents.html
- http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf

30

CUDA - NVIDIA

e See lan Buck’s talk to follow
e Web Information

- http://www.nvidia.com/object/cuda.html

31

PeakStream

e http://www.peakstreaminc.com
e C/C++ library based

- Extended operators
- Array types
e Full development stack
- Compiler
- Profiler
- Debugger
e Portability through virtual machine
- GPU and multi-core support

[1:.GPU PEAK

Introduction to RapidMind

e http://www.rapidmind.net

e A software development platform for multi-
core and stream processors, such as GPUs
and the Cell Broadband Engine

e Embedded within ISO Standard C++
- No new tools, compilers, preprocessors, etc.

e Portable core

- Exposes platform specific functionality to also allow
tuning for specific platforms

e Integrates with existing programming models
@]G P U | RAPIDMIND

Program Definition

> Program p;

' '
\W 0 = BEGIN {

Interface.

Definition
In<Value3f> a, b;
" Out<Value3f> C;
IF (all(a > 0.0F)) {
Value3f d = f(a, b);
c =d+ a * 2.0f;
} ELSE {
c =d-a* 2.0f;
} ENDIF; _
} END: Computation |

.
I‘ RAPIDMIND?34

SPMD Data Parallel Programming Model

e Parallel application: T
- Returnsanew array: C = p(A,B)
- Programs may have control flow
- Programs may perform random reads from other arrays
e May operate on subarrays

e Collective operations: T
- Reduce: a = reduce(p,A)
- Gather: A = BJU]
- Scatter: A[U] = B; Reduce
- others...

VYV V VVVVYVYYVYVYXN
HNEEEEEEEEEE

@]G P U RAPIDMIND

Step 1: Replace Types

#include <cmath> #include <rapidmind/platform.hpp>
float T; Valuelf T;
float a[512][512][3]; Array<2,Value3f> a(512,512);
float b[512][512][3]; Array<2,Value3f> b(512,512);
Tfloat func(Value3f func(

float r, float s Value3f r, Value3f s
) {) {

return (r + s) * T; return (r + s) * T;
} }

void func_arrays(Q {
for (Iint x = 0; x<512; x++) {
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k+t+) {
alyl[x1I[k] =
) func(alyl[x1[k1.bLyl[X1[KD;

}
}

ks
mGPU | RAPIDMINDS36

Step 2: Capture Computation

#include <cmath>

float T;
float a[512][512]1[3];
float b[512][512]1[3];

float func(
float r, float s
) {

return (r + s) * T;

}

void func_arrays(Q {
for (Iint x = 0; x<512; x++) {
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k++) {
alyl[x1I[k] =
) func(alyl[x1[k1.bLyl[X1[KD;

}
}

}
[4LGPU

#include <rapidmind/platform.hpp>

Valuelf f;
Array<2,Value3f> a(512,512);
Array<2,Value3f> b(512,512);

Value3f func(
Value3f r, Value3f s
) {

return (r + s) * T;

}

void func_arrays(Q) {

Program func_prog = BEGIN {
In<Value3f> r, s;
Out<Value3f> q;

q = Ffunc(r,s);

} END;

}-

RAPIDMINDS3

Step 3: Parallel Execution

#include <cmath>

float T;
float a[512][512]1[3];
float b[512][512]1[3];

float func(
float r, float s
) {

return (r + s) * T;

}

void func_arrays(Q {
for (int x = 0; x<512; x++)
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k++) {
alyl[x1I[k] =
) func(alyl[x1[k1.bLyl[X1[KD;

}
}

}
[4LGPU

#include <rapidmind/platform.hpp>

Valuelf f;
Array<2,Value3f> a(512,512);
Array<2,Value3f> b(512,512);

Value3f func(
Value3f r, Value3f s
) {

return (r + s) * T;

}

void func_arrays(Q) {

Program func_prog = BEGIN {
In<Value3f> r, s;
Out<Value3f> q;

q = Ffunc(r,s);
} END;
a = func _prog(a,b);
+

RAPIDMINDS38

Usage Summary

#include <rapidmind/platform.hpp>

e Usage:
Valuelf T;
- Include platform header Array<2,Value3f> a(512,512);
: : : A 2,Value3f> b(512,512);
- Link to runtime library Fray<z,valuest> b()
. Value3f func(
= Data: Value3f r, Value3f s
- Value tuples)4
return (r + s) * T;
- Arrays }
- Remote data abstraction void func_arrays() {
i Program func_prog = BEGIN {
e Programs: In<value3f> r, s;
_ . - Out<Value3f> (q;
Defined dynamically g = func(r,s):
- Execute on coprocessors } END;
. a = func_prog(a,b);
- Remote procedure abstraction }

mGPU RAPIDMIND?39

Summary

e Complete standard = Application spaces:
library Financial modeling

]] Image processin
e Full C++ integration JE Processing

Oil and Gas
= Expresses general Scientific Computation

purpose computations - Content Creation
e Multiple platforms e Example applications:
- Multi-core - FFT
~ Cell - BLAS

- Black-Scholes

- Raytracing

- Crowd simulation

- Shape detection

- Sorting

- Coupled Map Lattice Simulation

- GPUs

RAPIDMIND

Acknowledgements

e lan Buck - based off of his previous talks
e RapidMind

- Michael McCool

- Stefanus Du Toit

e Stanford
- The entire BrookGPU team

e Microsoft
- David Tarditli

[4LGPU

