
High Level Languages for High Level Languages for GPUsGPUs
OverviewOverview

Mike HoustonMike Houston
Stanford UniversityStanford University

2

High Level Shading LanguagesHigh Level Shading Languages

• “Old School”
– Use shading language along with OpenGL/DirectX

• Cg, HLSL, & OpenGL Shading Language
– Cg:

• http://www.nvidia.com/cg

– HLSL:
• http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/directx9_c/directx/graphics/reference/highlevellanguageshad
ers.asp

– OpenGL Shading Language:
• http://www.3dlabs.com/support/developer/ogl2/whitepapers/i

ndex.html

3

Compilers: CGC & FXCCompilers: CGC & FXC

• HLSL and Cg are syntactically almost identical
– Exception: Cg 1.3 allows shader “interfaces”, unsized arrays

• Command line compilers
– Microsoft’s fxc.exe

• Compiles to DirectX vertex and pixel shader assembly only
• fxc /Tps_3_0 myshader.hlsl

– NVIDIA’s cgc.exe
• Compiles to everything
• cgc -profile ps_3_0 myshader.cg

– Can generate very different assembly!
• Driver will recompile code

– Compliance may vary

4

GPGPU LanguagesGPGPU Languages
• Why do you want them?

– Make programming GPUs easier!
• Don’t need to know OpenGL, DirectX, or ATI/NV extensions
• Simplify common operations
• Focus on the algorithm, not on the implementation

• Accelerator
Microsoft Research
http://research.microsoft.com/research/downloads/

• Brook
Stanford University
http://graphics.stanford.edu/projects/brookgpu

• CTM
ATI/AMD
http://ati.amd.com/companyinfo/researcher/documents.html

• CUDA
NVIDIA
http://www.nvidia.com/object/cuda.html

• Peakstream
http://www.peakstreaminc.com

• RapidMind
Commercial follow-on to Sh
http://www.rapidmind.net

5

Microsoft Research Accelerator ProjectMicrosoft Research Accelerator Project

• GPGPU programming using data parallelism
• Presents a data-parallel library to the

programmer.
– Simple, high-level set of operations

• Library just-in-time compiles to GPU pixel
shaders or CPU code.
– Runs on top of .NET

6

DataData--parallel array libraryparallel array library
• Explicit conversions between data-parallel

arrays and normal arrays
• Functional: each operation produces a new

data-parallel array.
• Eliminate certain operations on arrays to

make them data-parallel
– No aliasing, pointer arithmetic, individual element

access

7

DataData--parallel array typesparallel array types

Array1[…]

DPArray1[…]

GPUCPU

DPArrayN[…]

ArrayN[…]

txtr1[…]

txtrN[…]

…library_calls() pix_shdrs()

A
PI

/D
riv

er
/ H

ar
dw

ar
e

8

Explicit conversionExplicit conversion

Array1[…]

DPArray1[…]

GPUCPU

DPArrayN[…]

ArrayN[…]

txtr1[…]

txtrN[…]

…library_calls() pix_shdrs()

A
PI

/D
riv

er
/ H

ar
dw

ar
e

Explicit conversion
between data-
parallel arrays and
normal arrays trigger
GPU execution

9

Functional styleFunctional style

Array1[…]

DPArray1[…]

GPUCPU

DPArrayN[…]

ArrayN[…]

txtr1[…]

txtrN[…]

…pix_shdrs()

A
PI

/D
riv

er
/ H

ar
dw

ar
e

Functional style: each
operation produces a new
data-parallel array

10

Types of operationsTypes of operations

Array1[…]

DPArray1[…]

GPUCPU

DPArrayN[…]

ArrayN[…]

txtr1[…]

txtrN[…]

…library_calls() pix_shdrs()

A
PI

/D
riv

er
/ H

ar
dw

ar
e

Restrict operations to allow
data-parallel programming:
No pointer arithmetic,
individual element
access/update

11

OperationsOperations
• Array creation
• Element-wise arithmetic operations: +, *, -, etc.
• Element-wise boolean operations: and, or, >, <

etc.
• Type conversions: integer to float, etc.
• Reductions/scans: sum, product, max, etc.
• Transformations: expand, pad, shift, gather,

scatter, etc.
• Basic linear algebra: inner product, outer

product.

12

Example: 2Example: 2--D convolutionD convolution

float[,] Blur(float[,] array, float[] kernel) {
using (DFPA parallelArray = new DFPA(array)) {

FPA resultX = new FPA(0.0f, parallelArray.Shape);
for (int i = 0; i < kernel.Length; i++) { // Convolve in X direction.

resultX += parallelArray.Shift(0,i) * kernel[i];
}
FPA resultY = new FPA(0.0f, parallelArray.Shape);
for (int i = 0; i < kernel.Length; i++) { // Convolve in Y direction.

resultY += resultX.Shift(i,0) * kernel[i];
}
using (DFPA result = resultY.Eval()) {

float[,] resultArray;
result.ToArray(out resultArray);
return resultArray;

}
}

}

13

JustJust--inin--time compilertime compiler

14

Availability and more informationAvailability and more information
• Binary version of Accelerator available for download

– http://research.microsoft.com/downloads
• Available for non-commercial use

– Meant to support research community use.
– Licensing for commercial use possible.

• Includes documentation and a few samples
• Runs on Microsoft.NET, most GPUs shipping since 2002.
• More information:

– ASPLOS 2006 “Accelerator: using data-parallelism to program GPUs
for general-purpose uses”, David Tarditi, Sidd Puri, Jose Oglesby

– http://research.microsoft.com/act

15

Brook: General Purpose Streaming LanguageBrook: General Purpose Streaming Language

• Stream programming model
– GPU = streaming coprocessor

• C with stream extensions
• Cross platform

– ATI & NVIDIA
– OpenGL, DirectX, CTM
– Windows & Linux

16

StreamsStreams

• Collection of records requiring similar
computation
– particle positions, voxels, FEM cell, …

Ray r<200>;
float3 velocityfield<100,100,100>;

• Similar to arrays, but…
– index operations disallowed: position[i]
– read/write stream operators

streamRead (r, r_ptr);
streamWrite (velocityfield, v_ptr);

17

KernelsKernels

• Functions applied to streams
– similar to for_all construct
– no dependencies between stream elements

kernel void foo (float a<>, float b<>,
out float result<>) {

result = a + b;
}

float a<100>;
float b<100>;
float c<100>;

foo(a,b,c);

for (i=0; i<100; i++)
c[i] = a[i]+b[i];

18

KernelsKernels

• Kernel arguments
– input/output streams

kernel void foo (float a<>,
float b<>,
out float result<>) {

result = a + b;
}

19

KernelsKernels

• Kernel arguments
– input/output streams
– gather streams

kernel void foo (..., float array[]) {
a = array[i];

}

20

KernelsKernels

• Kernel arguments
– input/output streams
– gather streams
– iterator streams

kernel void foo (..., iter float n<>) {
a = n + b;

}

21

KernelsKernels

• Kernel arguments
– input/output streams
– gather streams
– iterator streams
– constant parameters

kernel void foo (..., float c) {
a = c + b;

}

22

ReductionsReductions

• Compute single value from a stream
– associative operations only

reduce void sum (float a<>,
reduce float r<>)

r += a;
}

float a<100>;
float r;

sum(a,r);
r = a[0];
for (int i=1; i<100; i++)

r += a[i];

23

ReductionsReductions

• Multi-dimension reductions
– stream “shape” differences resolved by reduce

function

reduce void sum (float a<>,
reduce float r<>)

r += a;
}

float a<20>;
float r<5>;

sum(a,r); for (int i=0; i<5; i++)
r[i] = a[i*4];
for (int j=1; j<4; j++)

r[i] += a[i*4 + j];

24

Stream Repeat & StrideStream Repeat & Stride

• Kernel arguments of different shape
– resolved by repeat and stride

kernel void foo (float a<>, float b<>,
out float result<>);

float a<20>;
float b<5>;
float c<10>;

foo(a,b,c);

foo(a[0], b[0], c[0])
foo(a[2], b[0], c[1])
foo(a[4], b[1], c[2])
foo(a[6], b[1], c[3])
foo(a[8], b[2], c[4])
foo(a[10], b[2], c[5])
foo(a[12], b[3], c[6])
foo(a[14], b[3], c[7])
foo(a[16], b[4], c[8])
foo(a[18], b[4], c[9])

25

Matrix Vector MultiplyMatrix Vector Multiply
kernel void mul (float a<>, float b<>,

out float result<>) {
result = a*b;

}

reduce void sum (float a<>,
reduce float result<>) {

result += a;
}

float matrix<20,10>;
float vector<1, 10>;
float tempmv<20,10>;
float result<20, 1>;

mul(matrix,vector,tempmv);
sum(tempmv,result);

M
V

V
V

T=

26

Matrix Vector MultiplyMatrix Vector Multiply
kernel void mul (float a<>, float b<>,

out float result<>) {
result = a*b;

}

reduce void sum (float a<>,
reduce float result<>) {

result += a;
}

float matrix<20,10>;
float vector<1, 10>;
float tempmv<20,10>;
float result<20, 1>;

mul(matrix,vector,tempmv);
sum(tempmv,result);

RT sum

27

RuntimeRuntime

• Accessing stream data for graphics aps
– Brook runtime api available in C++ code
– autogenerated .hpp files for brook code

brook::initialize("dx9", (void*)device);

// Create streams
fluidStream0 = stream::create<float4>(kFluidSize, kFluidSize);
normalStream = stream::create<float3>(kFluidSize, kFluidSize);

// Get a handle to the texture being used by
// the normal stream as a backing store
normalTexture = (IDirect3DTexture9*)

normalStream->getIndexedFieldRenderData(0);

// Call the simulation kernel
simulationKernel(fluidStream0, fluidStream0, controlConstant,

fluidStream1);

28

ApplicationsApplications

ray-tracer

fft edge detect

segmentation
SAXPY

SGEMV

linear algebra

29

Brook for GPUsBrook for GPUs
• Release v0.3 available on Sourceforge

– CVS tree *much* more up to date

• Project Page
– http://graphics.stanford.edu/projects/brook

• Source
– http://www.sourceforge.net/projects/brook

• Paper:
Brook for GPUs: Stream Computing on Graphics Hardware

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon
Fatahalian, Mike Houston, Pat Hanrahan

Fly-fishing fly images from The English Fly Fishing Shop

30

CTM CTM –– AMDAMD

• See Justin Hensley’s talk to follow
• Web information

– http://ati.amd.com/companyinfo/researcher/documents.html
– http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf

31

CUDA CUDA -- NVIDIANVIDIA

• See Ian Buck’s talk to follow
• Web information

– http://www.nvidia.com/object/cuda.html

32

PeakStreamPeakStream

• http://www.peakstreaminc.com
• C/C++ library based

– Extended operators
– Array types

• Full development stack
– Compiler
– Profiler
– Debugger

• Portability through virtual machine
– GPU and multi-core support

33

Introduction to RapidMindIntroduction to RapidMind

• http://www.rapidmind.net
• A software development platform for multi-

core and stream processors, such as GPUs
and the Cell Broadband Engine

• Embedded within ISO Standard C++
– No new tools, compilers, preprocessors, etc.

• Portable core
– Exposes platform specific functionality to also allow

tuning for specific platforms

• Integrates with existing programming models

34

Program DefinitionProgram Definition

Program p;

p = BEGIN {
In<Value3f> a, b;
Out<Value3f> c;
IF (all(a > 0.0f)) {
Value3f d = f(a, b);
c = d + a * 2.0f;

} ELSE {
c = d – a * 2.0f;

} ENDIF;
} END;

DeclarationDeclaration DefinitionDefinition

InterfaceInterface

ComputationComputation

35

SPMD Data Parallel Programming Model SPMD Data Parallel Programming Model

• Parallel application:
– Returns a new array: C = p(A,B)
– Programs may have control flow
– Programs may perform random reads from other arrays

• May operate on subarrays
• Collective operations:

– Reduce: a = reduce(p,A)
– Gather: A = B[U]
– Scatter: A[U] = B;
– others…

Reduce

36

Step 1: Replace TypesStep 1: Replace Types

#include <rapidmind/platform.hpp>

Value1f f;
Array<2,Value3f> a(512,512);
Array<2,Value3f> b(512,512);

Value3f func(
Value3f r, Value3f s

) {
return (r + s) * f;

}

#include <cmath>

float f;
float a[512][512][3];
float b[512][512][3];

float func(
float r, float s

) {
return (r + s) * f;

}

void func_arrays() {
for (int x = 0; x<512; x++) {
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k++) {
a[y][x][k] =
func(a[y][x][k],b[y][x][k]);

}
}

}
}

37

#include <rapidmind/platform.hpp>

Value1f f;
Array<2,Value3f> a(512,512);
Array<2,Value3f> b(512,512);

Value3f func(
Value3f r, Value3f s

) {
return (r + s) * f;

}

void func_arrays() {
Program func_prog = BEGIN {
In<Value3f> r, s;
Out<Value3f> q;
q = func(r,s);

} END;
. . .

}

#include <cmath>

float f;
float a[512][512][3];
float b[512][512][3];

float func(
float r, float s

) {
return (r + s) * f;

}

void func_arrays() {
for (int x = 0; x<512; x++) {
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k++) {
a[y][x][k] =
func(a[y][x][k],b[y][x][k]);

}
}

}
}

Step 2: Capture ComputationStep 2: Capture Computation

38

#include <rapidmind/platform.hpp>

Value1f f;
Array<2,Value3f> a(512,512);
Array<2,Value3f> b(512,512);

Value3f func(
Value3f r, Value3f s

) {
return (r + s) * f;

}

void func_arrays() {
Program func_prog = BEGIN {
In<Value3f> r, s;
Out<Value3f> q;
q = func(r,s);

} END;
a = func_prog(a,b);

}

#include <cmath>

float f;
float a[512][512][3];
float b[512][512][3];

float func(
float r, float s

) {
return (r + s) * f;

}

void func_arrays() {
for (int x = 0; x<512; x++)
for (int y = 0; y<512; y++) {
for (int k = 0; k<3; k++) {
a[y][x][k] =
func(a[y][x][k],b[y][x][k]);

}
}

}
}

Step 3: Parallel ExecutionStep 3: Parallel Execution

39

Usage SummaryUsage Summary

#include <rapidmind/platform.hpp>

Value1f f;
Array<2,Value3f> a(512,512);
Array<2,Value3f> b(512,512);

Value3f func(
Value3f r, Value3f s

) {
return (r + s) * f;

}

void func_arrays() {
Program func_prog = BEGIN {
In<Value3f> r, s;
Out<Value3f> q;
q = func(r,s);

} END;
a = func_prog(a,b);

}

• Usage:
– Include platform header
– Link to runtime library

• Data:
– Value tuples
– Arrays
– Remote data abstraction

• Programs:
– Defined dynamically
– Execute on coprocessors
– Remote procedure abstraction

40

SummarySummary

• Application spaces:
– Financial modeling
– Image processing
– Oil and Gas
– Scientific Computation
– Content Creation

• Example applications:
– FFT
– BLAS
– Black-Scholes
– Raytracing
– Crowd simulation
– Shape detection
– Sorting
– Coupled Map Lattice Simulation

• Complete standard
library

• Full C++ integration
• Expresses general

purpose computations
• Multiple platforms

– Multi-core
– Cell
– GPUs

41

AcknowledgementsAcknowledgements

• Ian Buck – based off of his previous talks
• RapidMind

– Michael McCool
– Stefanus Du Toit

• Stanford
– The entire BrookGPU team

• Microsoft
– David Tarditi

