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UNIVERSALITY AND COMPLEXITY IN CELLULAR AUTOMATA 
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Cellular automata are discrete dynamical systems with simple construction but complex self-organizing behaviour. Evidence 
is presented that all one-dimensional cellular automata fall into four distinct universality classes. Characterizations of the 
structures generated in these classes are discussed. Three classes exhibit behaviour analogous to limit points, limit cycles and 
chaotic attractors. The fourth class is probably capable of universal computation, so that properties of its infinite time 
behaviour are undeeidable. 

1. Introduction 

Cellular automata are mathematical models for 
complex natural systems containing large numbers 
of simple identical components with local inter- 
actions. They consist of a lattice of sites, each with 
a finite set of possible values. The value of the sites 
evolve synchronously in discrete time steps accord- 
ing to identical rules. The value of a particular site 
is determined by the previous values of a neigh- 
bourhood of sites around it. 

The behaviour of a simple set of cellular auto- 
mata were discussed in ref. 1, where extensive 
references were given. It was shown that despite 
their simple construction, some cellular automata 
are capable of complex behaviour. This paper 
discusses the nature of this complex behaviour, its 
characterization, and classification. Based on in- 
vestigation of a large sample of cellular automata, 
it suggests that many (perhaps all) cellular auto- 
mata fall into four basic behaviour classes. Cellular 
automata within each class exhibit qualitatively 
similar behaviour. The small number of classes 
implies considerable university in the qualitative 
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behaviour of cellular automata. This universality 
implies that many details of the construction of a 
cellular automaton are irrelevant in determining its 
qualitative behaviour. Thus complex physical and 
biological systems may lie in the same universality 
classes as the idealized mathematical models pro- 
vided by cellular automata. Knowledge of cellular 
automaton behaviour may then yield rather gen- 
eral results on the behaviour of complex natural 
systems. 

Cellular automata may be considered as discrete 
dynamical systems. In almost all cases, cellular 
automaton evolution is irreversible. Trajectories in 
the configuration space for cellular automata 
therefore merge with time, and after many time 
steps, trajectories starting from almost all initial 
states become concentrated onto "attractors". 
These attractors typically contain only a very small 
fraction of  possible states. Evolution to attractors 
from arbitrary initial states allows for "self- 
organizing" behaviour, in which structure may 
evolve at large times from structureless initial 
states. The nature of the attractors determines the 
form and extent of such structures. 

The four classes mentioned above characterize 
the attractors in cellular automaton evolution. The 
attractors in classes 1, 2 and 3 are roughly anal- 
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ogous respectively to the limit points, limit cycles 
and chaotic ("s trange")at t ractors  found in con- 
tinuous dynamical systems. Cellular automata of 
the fourth class behave in a more complicated 
manner, and are conjectured to be capable of 
universal computation, so that their evolution may 
implement any finite algorithm. 

The different classes of cellular automaton be- 
haviour allow different levels of  prediction of the 
outcome of cellular automaton evolution from 
particular initial states. In the first class, the out- 
come of the evolution is determined (with proba- 
bility 1), independent of  the initial state. In the 
second class, the value of a particular site at large 
times is determined by the initial values of sites in 
a limited region. In the third class, a particular site 
value depends on the values of an ever-increasing 
number of initial sites. Random initial values then 
lead to chaotic behaviour. Nevertheless, given the 
necessary set of initial values, it is conjectured that 
the value of a site in a class 3 cellular automaton 
may be determined by a simple algorithm. On the 
other hand, in class 4 cellular automata, a particu- 
lar site value may depend on many initial site 
values, and may apparently be determined only by 
an algorithm equivalent in complexity to explicit 
simulation of the cellular automaton evolution. 
For these cellular automata, no effective prediction 
is possible; their behaviour may be determined 
only by explicit simulation. 

This paper describes some preliminary steps 
towards a general theory of cellular automaton 
behaviour. Section 2 below introduces notation 
and formalism for cellular automata. Section 3 
discusses general qualitative features of cellular 
automaton evolution illustrating the four behav- 
iour classes mentioned above. Section 4 introduces 
entropies and dimensions which characterize 
global features of cellular automaton evolution. 
Successive sections consider each of the four 
classes of cellular automata in turn. The last 
section discusses some tentative conclusions. 

This paper covers a broad area, and includes 
many conjectures and tentative results. It is not 
intended as a rigorous mathematical treatment. 

2. Notation and formalism 

a~ ̀) is taken to denote the value of site i in a 
one-dimensional cellular automaton at time step t. 
Each site value is specified as an integer in the 
range 0 through k - 1. The site values evolve by 
iteration of the mapping 

a( ° = Ffa('- o ,~(,- l) a~'- l) ,~(,- 1)1 (2.1) 
t • I - - r  , ~ i - - r + l , ' ' ' ,  , ' ' ' , ~ i + r  J "  

F is an arbitrary function which specifies the 
cellular automaton rule. 

The parameter r in eq. (2.1) determines the 
"range" of the rule: the value of a given site 
depends on the last values of a neighbourhood of 
at most 2r + 1 sites. The region affected by a given 
site grows by at most r sites in each direction at 
every time step; propagating features generated in 
cellular automaton evolution may therefore travel 
at most r sites per time step. After t time steps, a 
region of at most 1 + 2rt sites may therefore be 
affected by a given initial site value. 

The "elementary" cellular automata considered 
in ref. 1 have k = 2 and r = 1, corresponding to 
nearest-neighbour interactions. 

An alternative form of eq. (2.1) is 

j = r  

//(t) __ f I'- ~ m ,o(1 - I) '] (2.2) 

where the aj are integer constants, and the function 
f takes a single integer argument. Rules specified 
according to (2.1) may be reproduced directly by 
taking ~j = kr-L 

The special class of additive cellular automaton 
rules considered in ref. 2 correspond to the case in 
which f is a linear function of  its argument modulo 
k. Such rules satisfy a special additive super- 
position principle. This allows the evolution of any 
initial configuration to be determined by super- 
position of  results obtained with a few basis 
configurations, and makes possible the algebraic 
analysis of ref. 2. 

"Totalistic" rules defined in ref. 1, and used in 
several examples below, are obtained by taking 
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o~j = 1 (2.3) 

in eq. (2.2). Such rules give equal weight to all sites 
in a neighbourhood, and imply that the value of  a 
site depends only on the total of all preceding 
neighbourhood site values. The results of  section 3 
suggest that totalistic rules exhibit behaviour char- 
acteristic of all cellular automata. 

Cellular automaton rules may be combined by 
composition. The set of cellular automaton rules is 
closed under composition, although composition 
increases the number of sites in the neigh- 
bourhood. Composition of  a rule with itself yields 
patterns corresponding to alternate time steps in 
time evolution according to the rule. Compositions 
of  distinct results do not in general commute. 
However, if a composition F~F 2 of  rules generates 
a sequence of configurations with period 7r, then 
the rule F2F~ must also allow a sequence of 
configurations with period ft. As discussed below, 
this implies that the rules FIF 2 and F2F ~ must yield 
behaviour of the same class. 

The configuration a~ = 0 may be considered as a 
special "null" configuration ("ground state"). The 
requirement that this configuration remain invari- 
ant under time evolution implies 

suming symmetric boundary conditions), since the 
operation of space reflection commutes with time 
evolution in this case. 

Rules satisfying the conditions (2.4) and (2.5) 
will be termed "legal". 

The cellular automaton rules (2.1) and (2.2) may 
be considered as discrete analogues of partial 
differential equations of  order at most 2r + 1 in 
space, and first order in time. Cellular automata of  
higher order in time may be constructed by allow- 
ing a particular site value to depend on values of 
a neighbourhood of sites on a number s of  previous 
time steps. Consideration of "effective" site values 
Z, - i  ,,,,,,0-,) always allows equivalent first-order t l = 0  Ir~ ~ i  

rules with k = m s -  1 to be constructed. 
The form of the function F in the time evolution 

rule (2.1) may be specified by a "rule number" [1] 

R v  = ~ F[ai  . . . . . .  , a i + , ] k ~ ; = _ ,  k,-~a, +j.  (2.6) 
{a, . . . .  , +,} 

The function f in eq. (2.2) may similarly be 
specified by a numerical "code" 

( 2 r +  l ) ( k -  1) 

Cf = ~ k"f[n].  (2.7) 
n = 0  

F[0, 0 . . . . .  0] = 0 (2.4a) 

and 

rio]  = o .  (2 .4b)  

All rules satisfy this requirement if iterated at most 
k times, at least up to a relabelling of  the k possible 
values. 

It is convenient to consider symmetric rules, for 
which 

F[ai  . . . . . . . .  ai + r] = F[ai  + . . . . .  , a i -  r] " (2.5) 

Once a cellular automaton with symmetric rules 
has evolved to a symmetric state (in which 
a , + i = a , _ i  for some n and all i), it may sub- 
sequently generate only symmetric states (as- 

The condition (2.4) implies that both Re and C/are 
multiples of k. 

In general, there are a total of "k ~2"÷" possible 
cellular automaton rules of the form (2.1) or (2.2). 
Of these, k k,+~(kr+ I)/2-1 are legal. The rapid growth 
of the number of possible rules with r implies that 
an exponentially small fraction of  rules may be 
obtained by composition of rules with smaller r. 

A few cellular automaton rules are "reducible" 
in the sense that the evolution of  sites with partic- 
ular values, or on a particular grid of  positions and 
times, are independent of other site values. Such 
cellular automata will usually be excluded from the 
classification described below. 

Very little information on the behaviour of  a 
cellular automaton can be deduced directly from 
simple properties of its rule. A few simple results 
are nevertheless clear. 
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First, necessary (but not sufficient) conditions 
for a rule to yield unbounded growth are 

F[ai_ r ,  a~_~ + 1 . . . . .  a i -  1, O, 0 . . . . .  O] :# O, 

F [O, . . . ,  O, O, a~+ 1 . . . .  , ai+~] # O, (2.8) 

for some set of ai. If  these conditions are not 
fulfilled then regions containing nonzero sites sur- 
rounded by zero sites can never grow, and the 
cellular automaton must exhibit behaviour of  class 
1 or 2. For  totalistic rules, the condition (2.8) 
becomes 

f [n ]4 :0  (2.9) 

for some n < r. 
Second, totalistic rules for which 

f [n , ]>  f[nz] (2.10) 

for all n 1 > n 2 exhibit no "growth inhibition" and 
must therefore similarly be of  class 1 or 2. 

One may consider cellular automata both finite 
and infinite in extent. 

When finite cellular automata are discussed be- 
low, they are taken to consist of  N sites arranged 
around a circle (periodic boundary conditions). 
Such cellular automata have a finite number k N of  
possible states. Their evolution may be represented 
by finite state transition diagrams (cf. [2]), in which 
nodes representing each possible configuration are 
joined by directed arcs, with a single arc leading 
from a particular node to its successor after evo- 
lution for one time step. After a sufficiently long 
time (less than kU),  any finite cellular automaton 
must enter a cycle, in which a sequence of  
configurations is visited repeatedly. These cycles 
represent attractors for the cellular automaton 
evolution, and correspond to cycles in the state 
transition graph. At nodes in the cycles may be 
rooted trees representing transients. The transients 
are irreversible in the sense that nodes in the tree 
have a single successor, but may have several 
predecessors. In the course of time evolution, all 

states corresponding to nodes in the trees ulti- 
mately evolve through the configurations repre- 
sented by the roots of the trees to the cycles on 
which the roots lie. Configurations corresponding 
to nodes on the periphery of  the state transition 
diagram (terminals or leaves of the transient trees) 
are never reached in the evolution: they may occur 
only as initial states. The fraction of  configurations 
which may be reached after one time step in 
cellular automaton evolution, and which are there- 
fore not on the periphery of  the state transition 
diagram, gives a simple measure of  irreversibility. 

The configurations of  infinite cellular automata 
are specified by (doubly) infinite sequences of site 
values. Such sequences are naturally identified as 
elements of  a Cantor set (e.g. [3]). (They differ from 
real numbers through the inequivalence of 
configurations such as .  111111. . .  and 1.0000. . .  ). 
Cellular automaton rules define mappings from 
this Cantor set to itself. The mappings are invari- 
ant under shifts by virtue of the identical treatment 
of each site in eqs. (2.1) and (2.2). With natural 
measures of distance in the Cantor set, the map- 
pings are also continuous. The typical irre- 
versibility of  cellular automaton evolution is mani- 
fest in the fact that the mapping is usually not 
injective, as discussed in section 4. 

Eqs. (2.1) and (2.2) may be generalized to several 
dimensions. For  r---1, there are at least two 
possible symmetric forms of neighbourhood, con- 
taining 2d + 1 (type I) and 3 a (type II) sites re- 
spectively; for larger r other "unit  cells" are 
possible. 

3. Qualitative characterization of cellular 
automaton behaviour 

This section discusses some qualitative features 
of cellular automaton evolution, and gives empir- 
ical evidence for the existence of  four basic classes 
of behaviour in cellular automata. Section 4 intro- 
duces some methods for quantitative analysis of  
cellular automata. Later sections use these meth- 
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ods to suggest fundamental characterizations of  
the four cellular automaton classes. 

Fig. 1 shows the pattern of  configurations gener- 
ated by evolution according to each of  the 32 
possible legal totalistic rules with k = 2 and r --- 2, 
starting from a "disordered" initial configuration 
(in which each site value is independently chosen as 
0 or 1 with probability ½). Even with such a struc- 
tureless initial state, many of  the rules are seen to 
generate patterns with evident structure. While the 
patterns obtained with different rules all differ in 
detail, they appear to fall into four qualitative 
classes: 

I) Evolution leads to a homogeneous state (real- 
ized for codes 0, 4, 16, 32, 36, 48, 54, 60 and 62). 

2) Evolution leads to a set of  separated simple 
stable or periodic structures (codes 8, 24, 40, 56 
and 58). 

3) Evolution leads to a chaotic pattern (codes 2, 
6, 10, 12, 14, 18, 22, 26, 28, 30, 34, 38, 42, 44, 46 
and 50). 

4) Evolution leads to complex localized struc- 
tures, sometimes long-lived (codes 20 and 52). 

Some patterns (e.g. code 12) assigned to class 3 
contain many triangular "clearings" and appear 
more regular than others (e.g. code 10). The degree 
of  regularity is related to the degree of  irre- 
versibility of  the rules, as discussed in section 7. 

Fig. 2 shows patterns generated from several 
different initial states according to a few of  the 
cellular automaton rules of  fig. 1. Patterns ob- 
tained with different initial states are seen to differ 
in their details, but to exhibit the same character- 
istic qualitative features. (Expectional initial states 
giving rise to different behaviour may exist with 
low or zero probability.) Fig. 3 shows the 
differences between patterns generated by various 
cellular automaton rules from initial states 
differing in the value of  a single site. 

*This sampling and many other investigations reported in 
this paper were performed using the C language computer 
program[4]. Requests for copies of this program should be 
directed to the author. 

Figs. 4, 5 and 6 show examples of  various sets 
of  totalistic cellular automata. Fig. 4 shows some 
k = 2 ,  r = 3 rules, fig. 5 some k = 3, r = 1 rules, 
and fig. 6 some k = 5, r = 1 rules. The patterns 
generated are all seen to be qualitatively similar to 
those of  fig. 1, and to lie in the same four classes. 

Patterns generated by all possible k = 2, r = 1 
cellular automata were given in ref. 1, and are 
found to lie in classes 1, 2 and 3. Totalistic k = 2, 
r = 1 rules are found to give patterns typical of  all 
k = 2, r = 1 rules. In general, totalistic rules appear 
to exhibit no special simplifications, and give rise 
to behaviour typical of  all cellular automaton rules 
with given k and r. 

An extensive sampling of  many other cellular 
automaton rules supports the general conjecture 
that the four classes introduced above cover all 
one-dimensional cellular automata*. 

Table I gives the fractions of  various sets of  
cellular automata in each of  the four classes. With 
increasing k and r, class 3 becomes overwhelmingly 
the most common. Classes 1 and 2 are decreasingly 
common. Class 4 is comparatively rare, but be- 
comes more common for larger k and r. 

"Reducible" cellular automata (mentioned in 
section 2) may generate patterns which contain 
features from several classes. In a typical case, fixed 
or propagating "membranes"  consisting of  sites 
with a particular value may separate regions con- 
taining patterns from classes 3 or 4 formed from 
sites with other values. 

This paper concerns one-dimensional cellular 
automata. Two-dimensional cellular automata 
also appear to exhibit a few distinct classes of  
behaviour. Superficial investigations [5] suggest 

Table I 
Approximate fractions of  lega~ totalistic cellular automaton 
rules in each of  the four basic classes 

k = 2  k = 2  k = 2  k = 3  
Class r = 1 r = 2 r = 3 r = 1 

1 0.50 0.25 0.09 0.12 
2 0.25 0.16 0.11 0.19 
3 0.25 0.53 0.73 0.60 
4 0 0.06 0.06 0.07 
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code  2 8  ( 0 1 1 0 1 0 )  code 28 ( 0 1 1 1 0 0 )  c o d e  30 ( 0 1 1 l i D )  

c o d e  3~ (100000} c o d e  34 ( 1 0 0 0 1 0 )  

~ . , . . . . . ,  ,.. . .~--: .~: . . : . '1" . , . . . .~ .  , . : ,  ~_ .%.~ ' ,  , . ' ~ . . " - : t - . , .  

code 3B (10o i0o )  "M~ . . . .  . '~  " ~ ' ~ - ~ " "  ' " ~  . . . . . . . . . .  .-"..l 

code 3 8  ( ] 00110)  

• c o d e  44 ( 1 0 1 1 0 0 )  

code 40 (1010(30) 

code 4B (101 i ]0)  

co(k, 42 (10101()) 

code 48 (110000) 
'~'  ' m ' S F ' -  • - . e "  • 1 . . . . . . . . . . .  W . . . . . . . .  

Fig. lb. 
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Fig. lc. 

Fig. la-c. Evolution of all possible legal one-dimensional totalistic cellular automata with k = 2 and r = 2. k gives the number of 
possible values for each site, and r gives the range of the cellular automaton rules. A range r = 2 allows the nearest and next-nearest 
neighbours of a site to affect its value on the next time step. Time evolution for totalistic cellular automata is defined by eqns. (2.2) 
and (2.7). The initial state is taken disordered, each site having values 0 and 1 with independent equal probabilities. Configurations 
obtained at successive time steps in the cellular automaton evolution are shown on successive horizontal lines. Black squares represent 
sites with value 1; white squares sites with value 0. All the cellular automaton rules illustrated are seen to exhibit one of four qualitative 
classes of behaviour. 

that  these classes m a y  in fact be identical to the 

four  found  in one-dimensional  cellular au tomata .  

4. Quantitat ive characterizations of cellular 
automaton behaviour 

This section describes quanti tat ive statistical 

measures o f  order  and chaos  in pat terns  generated 

by cellular a u t o m a t o n  evolution.  These measures 
may  be used to distinguish the four  classes o f  

behaviour  identified qualitatively above. 
Consider  first the statistical propert ies o f  

configurat ions generated at a part icular  time step 
in cellular a u t o m a t o n  evolution.  A disordered ini- 

tial state, in which each site takes on its k possible 
values with equal independent  probabilities, is 

statistically random.  Irreversible cellular 

a u t o m a t o n  evolution generates deviations f rom 

statistical randomness .  In  a r a n d o m  sequence, all 

k x possible subsequences ("blocks")  o f  length X 

must  occur  with equal probabilities. Deviat ions 

f rom randomness  imply unequal  probabilities for 

different subsequences. With  probabilit ies p~X) for 

the k x possible sequences o f  site values in a length 

X block, one may  define a specific "spatial  set 

en t ropy"  

1 1 ~f s(x)(X) = ~ o g k ( j ~  O(p~))) (4.1) 

where O(p)= 1 for p > 0  and 0 ( 0 ) = 0 ,  and a 

specific "spatial  measure en t ropy"  

1 ~ (x) s~)(X)=--~ ~= pj logkp} x,. (4.2) 
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k=2, r=2, to ta l is t ic  rule, code I0 (001010)  k=2, r=2, to la l i s t lc  rule. code I0 (001010)  
• • , ,  ~ , " . .  ". 

k=2, r=2, to ta l is l ic  rule, code 12 (001100)  k=2, r=2, to lahMie  rule, code 12 (001100)  

k=2, r : 2 ,  total is t ic  rule, code 24 (011000)  k=2, r : : 2  total iMic rule, code 24 ( 0 l l 0 0 0 )  

k~2, r=2, total is t ic  rule, code 52 (I i(~100) k=2, r ' :2,  total iMie rule. code 52 (110100)  

F i g ,  2 a .  
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k=2, r=2, to ta l i s t ic  rule, code 10 (001010)  k=2, r=2,  to ta  s t e  rule, code 10 (001010)  

• " - .~ ~. .v., 3 ~.~_ . i 
"" I, 

all 

k=2, r=2, to ta l is t ic  rule, code 12 (001100)  R ~ ,  r=2, to ta l i s t ic  rule, code 12 (001100)  

k = 2 i r = 2 ,  to ta l l shc  rule, code 24 (011000)  
. ~ - 1 ~ -  k=2, r=2, to ta l is t ic  rule. code 2,t (O11000) 

" m i ' i d r  i " .  " i m , i , i i ~ i d l f  " i l i a  " , "  "dm ,i • , l ~ - ,  • . ,ao~iui  

k=2, r=2, to ta l i s t ic  rule, cod( 52 (11010(1) k=2. r=2, to ta l i s t ic  rule, code 52 (110100)  

Fig. 2b. 

Fig. 2. Evolution of some cellular automata illustrated in fig. l from several disordered states. The first two initial states shown differ 
by a change in the values of two sites, the next by a change in the values of ten sites. The last state is completely different. 
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code ~4 (OlIO00) 

code 4~ (101010) 

. . .~ ,~ ~ .~, 

code 20 ( 0 1 O l 0 0 ~ ~  oodv F,:~ (I 1010t)) 

code 20 (010100) code ~,2 (I 10100) 

Fig. 3. Differences modulo two between patterns generated by the time evolution of several cellular automata illustrated in fig. 1 with 
disordered states differing by a change in the value of a single site. 
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k :3  r : l .  {olnlL~li,: rule. code 33:3 (O l lO lO I ) )  k 3 r - I .  l o t a h s t i c  r u l e  c o d e  3 3 6  ( 0 1 1 0 1 1 0 )  k = 3 ,  r ~ l ,  t o t a l i s t i c  r u l e .  c o d e  3 3 9  ~O110120) 

k ~ ; J  r ~ l ,  t o t a l i s t i c  r u l e .  c o d e  3 4 2  ( 0 1 1 0 2 0 0 )  

k :L r = 1 totalist~t, ruh', code :IF, I {011 lOOO) 

• ,-~,~s- ".NIF,IIF",~IF~"~, ~ "'l,q 

k ~ 3 ,  r=  I,  t o t a l i s t i c  r u l e •  c o d e  3 4 5  ( 0 1 1 0 ~ 1 0 )  

• • " ' i" 
k_=3, r=l, totalistic rule, code 380 (0111100) 

k ~. r I ,  to t~ l l is t i r  r u l e  code d54 ( O l l l O l O )  

k 3,  r~  1, t o t a l i s t i c  r u l e .  c o d e  3 4 ~  ( 0 1 1 0 2 2 0 )  

Ic 3, r I .  t o t a l i , l i e  ruN,.  e o d r  3 5 ?  ( 0 1 1 1 0 2 0 )  

k = 3 ,  r ~ l ,  t o t a l i s t i c  r u l e ,  c o d e  3 6 3  ( 0 1 1 1 1 1 0 )  k = 3 ,  r = l ,  t o t a l i s t i c  r u l e ,  c o d e  3 6 B  (0111120) 

Fig. 4. Examples of  the evolution of typical cellular automata with k = 3 (three possible site values) and r -- 1 (only nearest neighbours 
included in time evolution rules). White squares represent value 0, grey squares value l,  and black squares value 2. The initial state 
is taken disordered, with each site having values 0, 1 and 2 with equal independent probabilities. 
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S. Wolfram I Universality and complexity in cellular automata 
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Fig. 5. Examples of  the evolution of  typical k = 2, r = 3 cellular automata from a disordered initial state. 
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k 5 r ~ I p t o t ~ l i s t t e  ~ l e ,  code 155 (Ot~OOO000(ll I I o )  

! 
! 
! 

i 

f ,  ,. I t , , t . l ~ , ,  r~,le, c,,~h- 1~5 (e00eut~0n011:~( l )  

.. ~ > ~ z ~ ' E £ -  ,6.-~:,Z~. ,z.. 

k ;  5 ,  r I t o t n h s t l c  ~ l e  ~'~d,, I?(J (00(]0~(J0Og1140) k f ,  a t  t o r c h . t i t  r o l l . . ' ~ d e  175 ( ( J000000o01~00)  k 5 • I I t , tnlist~c m,le, t-,,de 169 {00000(~0001210)  

k=S. t ~ l ,  t o t a l i s t i c  ~ l e .  ~ d e  185 ( 0 0 0 0 0 0 0 0 0 1 2 e 0 )  k 5. ~ I t o tn l J~he  ~ l e  code  t g o  (00000fJ0(10t23Q)  k = 5  r : l  to tn} i s t i e  ~ e .  ~ d e  195 (00( IO000O0t~40)  
. . . .  

Fig. 6. Examples of the evolution of typical k = 5, r = 1 cellular automata from a disordered initial state. Darker squares represent 
sites with larger values. 
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In both cases, the superscript (x) indicates that 
"spatial" sequences (obtained at a particular time 
step) are considered. The "set entropy" (4.1) is 
determined directly by the total number N(~)(X) of 
length X blocks generated (with any nonzero 
probability) in cellular automaton evolution, ac- 
cording to 

unequal probabilities, su(X)= 1 only for "X- 
random" sequences [7], in which all k x possible 
sequences of  X site values occur with equal proba- 
bilities. In addition to (4.4), the definitions (4.1) 
and (4.2) imply 

< (x) 0 _ S~ ( X )  <_ s(X)(X). (4.5) 

l 
s tx)(x)  = ~ l°gkN(~)(X)  • (4.3) , 

In the "measure entropy" (4.2) each block is 
weighted with its probability, so that the result 
depends explicitly on the probability measure for 
different cellular automaton configurations, as in- 
dicated by the subscript /t. Set entropy is often 
called "topological entropy"; measure entropy is 
sometimes referred to as "metric entropy"* (e.g. 
[6]). For blocks of length 1, the measure entropy 
s(~X)(1) is related to the densities Pi, of  sites with each 
of the k possible values i. s~(2) is related to the 
densities of "digrams" (blocks of length 2), and so 
on. In general, the measure entropy gives the 
average "information content" per site computed 
by allowing for correlations in blocks of sites up to 
length X. Note that the entropies (4.1) and (4.2) 
may be considered to have units of  (k-ary) bits per 
unit distance. 

In the equation below, s~l stands for either set 
entropy s (~) or for measure entropy s~ ~). 

The definitions (4.1) and (4.2) yield immediately 

s (p (X)  = 0 if and only if just one length X block 
occurs with nonzero probability, so that s ~ ( X )  = 0 

also. As discussed below, the inequality (4.5) is 
saturated for class 1 cellular automata. 

Both set and measure entropies satisfy the 
subadditivity condition 

(X~ + (x) X2) < (x) (~) X 1 s ~)(X,) + m2s ~) (X2)  X~)s(~,)(xt + 

(4.6) 

The inequality is saturated if successive blocks of  
sites are statistically uncorrelated. In general, it 
implies some decrease in s ~ l ( X  ) with X (for exam- 
ple, (x) (x) s00(2X ) < so,)(X)). For cellular automata with 
translation invariant initial probability measures, 
stronger constraints may be obtained (analogous 
to those for "stationary" processes in commu- 
nication theory [8]). First, note that bounds on 

(x) so,)(X ) valid for any set of  probabilities p~X) also 
apply to s(~)(X), since s(x)(x)  may formally be 
reproduced from the definition (4.2) for s(~)(X) by 
a suitable (extreme) choice of  the p~*). The proba- 
bility p!X)[at, . . . ,  ax] for the sequence of  site values 
at . . . .  , ax  is given in general by 

(x) < (x) X _ .S. ( X ) _ S  ( ) <  1 . (4.4) 

The first inequality is saturated (equality holds) 
only for "equidistributed" systems, in which all 
nonzero block probabilities p~X) are equal. The 
second inequality is saturated if all possible length 
X blocks of site values occur, but perhaps with 

*The te rms  " se t "  and  " m e a s u r e "  ent ropy,  toge ther  wi th  " s e t "  
and  " m e a s u r e "  d imens ion ,  are  in t roduced  here  to ra t iona l ize  
nomenc la tu re .  

p(X)[al . . . . .  ax] 

= p(X)[at . . . .  , ax_  L]p(*)[axla t , . . . ,  a t -  t], (4.7) 

where I a~ . . . . .  ax_  t] denotes the conditional 
probability for a site value ax, preceded by site 
values at . . . .  , ax_ ~. Defining a total entropy 

S(X)r,, , ax] = ,u t r o t , - -  • 

- - ~  p(*)[at . . . . .  ax] Iogkp(*)[al . . . . .  ax],  (4.8) 

and corresponding conditional total entropy 
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ST)tax]a1 . . . . .  ax- ,1 
-- - ~ p (~[aL . . . .  , ax] lOgkp (X)[ax[al . . . . .  ax_ l] 

<_ S(uX)[al, . . . , a x ]  , (4.9) 

one obtains 

XsT)(x) = sT) (x  ) < _ - -  
X - 1  

X S( f (X  - 1) 

+ 1 S(~)(X ~ 
# x J "  (4.1 O) 

Hence, 

(x) °(~)tY 1) s~)(X) < (4.11) 

so that the set and measure entropies for a trans- 
lationally invariant system decrease monotonically 
with the block size X. One finds in addition in this 
case that 

A 2 (~) (~) l) - 2Xs~I(X ) x(Xso,)(X)) = ( x  + 1)s~)(X + 

+ (X ~) - -  l ) s0~)(X - 1) _< 0 ,  ( 4 . 1 2 )  

so that (x) Xso~)(X) is a convex function of X. 
With the definition s(~)(0)= l, this implies that 

there exists a critical block size X~, such that 

s(x)(x) = 1, for  X < Xc, 

s(x)(X) < 1, for  X >_ X, .  
(4.13) 

The significance and values of the critical block size 
Xc will be discussed in section 7 below. 

The entropies s ~x) and s(u x) may be evaluated 

either for many blocks in a single cellular automa- 
ton configuration, or for blocks in an ensemble of  
different configurations. For  smooth probability 
measures on the ensemble of possible initial 
configurations, the results obtained in these two 
ways are almost always the same. (A probability 
measure will be considered "smooth"  if changes in 
the values of  a few sites in an infinite configuration 
lead only to infinitesimal changes in the probability 
for the configuration.) The set entropy s ix) is 

typically independent of  the probability measure 
on the ensemble, for any smooth measure. The 
measure entropy s(f  in general depends on the 
probability measure for initial configurations, al- 
though for class 3 cellular automata, it is typically 
the same for at least a large classes of smooth 
measures. Notice that with smooth measures, the 
values of s(x)(x) and s~)(X) are the same whether 
the length X blocks used in their computation are 
taken disjoint or overlapping. 

The entropies (4.1) and (4.2) are defined for 
infinite cellular automata. A corresponding 
definition may be given for finite cellular automata, 
with a maximum block length given by the total 
number of sites N the cellular automaton. The 
entropies s(X)(N) and s~X)(N) are related to global 
properties of  the state transition diagram for the 
finite cellular automaton. The value of s(~)(N) at a 
particular time is determined by the fraction of  
possible configurations which may be reached at 
that time by evoluticm from any initial 
configuration. The limiting value of s(X)(N) at large 
times is determined by the fraction of  configuration 
on cycles in the state transition graph. Starting 
from an initial ensemble in which all kN 
configurations occur with equal probabilities, the 
limiting value of  s(,X)(N) is equal to the limiting 
value of  s(X)(N) if all transient trees in the state 
transition graph for the finite cellular automaton 
are identical, so that all configurations with non- 
zero probabilities are generated with the same 
probability (cf. [2]). 

As mentioned in section 2, the configurations of 
an infinite cellular automaton may be considered 
as elements of a Cantor set. For  an ensemble of 
disordered configurations (in which each site takes 
on its k possible values with equal independent 
probabilities), this Cantor set has fractal dimension 
1. Irreversible cellular automaton evolution may 
lead to an ensemble of configurations correspond- 
ing to elements of  a Cantor  set with dimension less 
than one. The limiting value of s(x)(X) as X ~  
gives the fractal or "set"  dimension of  this set. 

Relations between entropy and dimension may 
be derived in many ways (e.g. [6, 9]). Consider a set 
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of numbers in the interval [0, 1] of  the real line. 
Divide this interval into k b bins of  width k-b, and 
let the fraction of bins containing numbers in the 
set be N(b). For large b (small bin width), this 
mimber grows as k db. The exponent d is the 
Kolmogorov dimension (or "capacity" (cf. [8])) of  
the set. If  the set contains all real numbers in the 
interval [0, 1], then N ( b ) =  k b, and d = 1, as ex- 
pected. If  the set contains only a finite number of  
points, then N(b)  must tend to a constant for large 
b, yielding d = 0. The classic Cantor set consists of 
real numbers in the interval [0, 1], whose ternary 
decomposition contains only the digits 0 and 2. 
Dividing the interval into 3 b equal bins, it is clear 
that 2 b of these bins contain points in the set. The 
dimension of the set is thus log3 2. This dimension 
may also be found by an explicit recursive geo- 
metrical construction, using the fact that the set is 
"self-similar", in the sense that with appropriate 
magnification, its parts are identical to the whole. 

The example above suggests that one may define 
a "set dimension" d according to 

d = l i m  l b ~  b logaN(b), (4.14) 

where N(b) is the number of bins which contain 
elements of the set. The bins are of equal size, and 
their total number is taken as k b. Except in partic- 
ularly pathological examples*, the dimension ob- 
tained with this definition is equal to the more 
usual Hausdorff (or "fractal") dimension (e.g. [11]) 
obtained by considering the number of  patches at 
arbitrary positions required to cover the set (rather 
than the number of fixed bins containing elements 
of the set). 

The definition (4.14) may be applied directly to 
cellular automaton configurations, The k b "bins" 
may be taken to consist of cellular automaton 
configurations in which a block of  b sites has a 

* Such as the set formed from the end points  of  the intervals 
at each stage in the geometrical construction o f  the classic 
Cantor set. This set has  zero Hausdorf f  dimension, but  Kol- 
mogorov dimension log3 2 [9]. 

particular sequence of values. The definition (4.3) 
of set entropy then shows that the set dimension is 
given by 

d (x) = lim s¢~)(X). (4.15) 
X ~  oO 

A disordered cellular automaton configuration, in 
which all possible sequences of site values occur 
with nonzero probability (or an ensemble of such 
configurations), gives d <x~ ---1, as expected. Simi- 
larly, a homogeneous configuration, such as the 
null configuration, gives d cx) = 0. 

The set of  configurations which appear at large 
times in the evolution of a cellular automaton 
constitute the attractors for the cellular automa- 
ton. The set dimension of these attractors is given 
in terms of the entropies for configurations appear- 
ing at large times by eq. (4.15). 

Accurate direct evaluation of  the set entropy 
s~x)(X) from cellular automaton configurations typ- 
ically requires sampling of  many more than k x 
length X blocks. Inadequate samples yield system- 
atic underestimates of s~x)(X). Direct estimates are 
most accurate when all nonzero probabilities for 
length X blocks are equal. In this case, a sample of 
k b blocks yields an entropy underestimated on 
average by approximately 

logk(l - exp( - k b- xs(x))). (4.16) 

Unequal probabilities increase the magnitude of 
this error, and typically prevent the generation of  
satisfactory estimates of d <x~ from direct simu- 
lations of cellular automaton evolution. (If the 
probabilities follow a log normal distribution, as in 
many continuous chaotic dynamical systems [12], 
then the exponential in eq. (4.16) is apparently 
replaced by a power [13].) 

The dimension (4.15) is given as the limiting 
exponent with which N<x)(X) increases for large X. 
In the formula (4.15), this exponent is obtained as 
the limit of  lOgk[N(X) l/x] for large X. If  N(x)(X) 
indeed increases roughly exponentially with X, 



Caption to color plates 

Patterns generated by the evolution of typical one-dimensional cellular automata from disordered initial 
states. Succ.ossive time steps in the evolution are shown on successive horizontal lines. Each site takes on k 
possible values; value zero is represented by black, 1 by red, 2 by green, 3 by blue, and 4 by yellow. The 
cellular automata in the first column have k = 4 while those in the second column have k = 5. In both 
cases, the range r of the cellular automaton rule is taken to be one. (I am grateful to R. Pike and J. 
Condon of Bell Laboratories for their help in preparing these figures.) 
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and a specific temporal measure entropy in anal- 
ogy with eq. (4.2) by 

1 kT 
s~f(T) = ---T ~, p~O logkp~O. (4.21) 

j = l  

These entropies satisfy relations directly analogous 
to these given in eqs. (4.3) through (4.6) for spatial 
entropies. They obey relations analogous to (4.11) 
and (4.12) only for cellular automata in "equi- 
librium", statistically independent of time. The 
temporal entropies (4.20) and (4.21) may be con- 
sidered to have units of (k-ary) bits per unit time. 

Sequences of values in particular cellular autom- 
aton configurations typically have little similarity 
with the "time series" of values attained by a 
particular site under cellular automaton evolution. 
The spatial and temporal entropies for a cellular 
automaton are therefore in general quite different. 
Notice that the spatial entropy of a cellular autom- 
aton configuration may be considered as the tem- 
poral entropy of a pure shift mapping applied to 
the cellular automaton configuration. 

Just as dimensions may be assigned to the set of 
spatial configurations generated in cellular autom- 
aton evolution, so also one may assign dimensions 
to the set of temporal sequences generated by the 
evolution. The temporal set dimension may be 
defined in analogy with eq. (4.15) by 

d~t)= lim s°)(T), (4.22) 
T ~  oo 

As discussed in section 6 below, class 2 cellular 
automata yield periodic structures at large times, 
so that the correspondingly temporal entropies 
vanish. 

As a generalization of the spatial and temporal 
entropies introduced above, one may consider 
entropies associated with space-time "patches" in 
the patterns generated by cellular automaton evo- 
lution, as illustrated in fig. 7. With probabilities 
p~,,x) for the k xr possible patches of spatial width 
X and temporal extent T, one may define a set 
entropy 

l / kxr ) 
s(t:X)(T; If ')= ~ log/c( j=Z~ 10(p~ ''x)) , (4.25) 

and a measure entropy 

1 kXT 
SI[;X'( T ;  X )  : - - T  ~=1 p~t,X) l o g ,  p~,.x). 

j= 
(4.26) 

Clearly, 

(x) 1 s(t;X)tl" 
s ~ ( X )  = ~ o~ ~ , X ) .  

(4.27) 

If no relation existed between configurations at 
successive time steps then the entropies (4.25) and 
(4.26) would be bounded simply by 

s(':X)tT" X)  < s°;X)(T; X)  < X .  it i ~ , __ (4.28) 

and the temporal measure dimension may be 
defined by 

d(f= lim s ~ ( T ) .  (4.23) 
T ~  

If the evolution of a cellular automaton is peri- 
odic, so that each site takes on a fixed cycle of 
values, then 

d (a = d~ t) = 0. (4.24) 

The cellular automaton rules introduce definite 
relations between successive configurations and 
tighten this bound. In fact, the values of all sites in 
a T × X space-time patch are determined accord- 
ing to the cellular automaton rules by the values in 
the "rind" of the patch, as indicated in fig. 7. The 
rind contains only X + 2r(T  -- 1) sites (where r is 
the "range" of the cellular automaton rule, defined 
in section 2), so that 

s~';X)(T; X)  <_ s(';X)(T; X)  <_ [X + 2r(T -- 1)]/T. 
(4.29) 
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For large T (and fixed X), therefore configurations. Eqs. (4.31) and (4.32) show that 

S<t;~VT" X) < s ('; X)(T; X) < 2r / t  \ ~ ,  - -  - -  • (4.30) ~'0,)a(') _< hw) < 2rd~)). (4.35) 

If  both X and T tend to infinity with T / X  fixed, 
eq. (4.30) implies that the "information per site" 
s~;X)(T; X ) / X  in a T x X patch must tend to zero. 
The evolution of  cellular automata can therefore 
never generate random space-time patterns. 

With T ~ ,  X fixed, the length X horizontal 
section of  the rind makes a negligible contribution 
to the entropies. The entropy is maximal if the 2r 
vertical columns in the rind are statistically inde- 
pendent, so that 

(r x) (t) S~) (o0; X) < 2rso,)(~) = %,4(,) - , , - - , - ,  ( , u )  • (4.31) 

In addition, 

,,(t;x)t',-~. y s($;~(oo;x) <_ o~) , . . . .  + 11, (4.32) 

where the bounds are saturated for large X if the 
time series associated with different sets of  sites are 
statistically uncorrelated. 

The limiting set entropy 

h =  lim s(';~)(T;X) 
T ~  o o  

X ~  oo  

T/X~  oo 

(4.33) 

In addition, 

h~) < "~,,4(x) (4.36) . . . .  ( u )  • 

The basic cellular automaton time evolution rule 
(2.1) implies that the value ai of  a site i at a 
particular time step depends on sites a maximum 
distance r away on the previous time step accord- 
ing to the function F[ai . . . . . .  , a~+ r]' After T time 
steps, the values of  the site could depend on sites 
at distances up to rT, so that features in patterns 
generated by cellular automaton evolution could 
propagate at "speeds" up to r sites per time step. 
For  many rules, however, the value of  a site after 
many time steps depends on fewer initial site 
values, and features may propagate only at lower 
speeds. In general, let IIr~ll denote the minimum R 
for which the value of site i depends only on the 
initial values of  sites i -  R . . . . .  i + R. Then the 
maximum propagation speed associated with the 
cellular automaton rule F may be defined as 

= IIF ll/r. (4.37) 

for temporally-extended patches is a fundamental 
quantity equivalent to the set (or topological) 
entropy of  the cellular automaton mapping in 
symbolic dynamics, h may be considered as a 
dimension for the mapping. It specifies the asymp- 
totic rate at which the number of possible histories 
for the cellular automaton increases with time. The 
limiting measure entropy 

h, = lim s~;X)(T; X) (4.34) 
T ~  ct) 

X ~ o v  

T ] X ~  

gives the average amount  of  "new information" 
contained in each cellular automaton configur- 
ation, and not already determined from previous 

(The rule is assumed symmetric; for nonsymmetric 
rules, distinct left and right propagation speeds 
may be defined.) Clearly, 

2+ < r .  (4.38) 

2rT 
--,,-- 2 k +T ~ 

Itx'xx'Y"x2v~" /'LYYV"xCV~ I "*"'~"\\\11/i/I/" TI 
Fig. 8. Pattern of dependence of temporal sequences on spatial 
sequences, used in the proof of inequalities between spatial and 
temporal entropies. 
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When 2+ = 0, finite regions of the cellular au- 
tomaton must ultimately become isolated, so that 

dm h{,) = 0 (4.39) (~) = " ' ( v )  

The construction of fig. 8 shows that for any T, 

s{~)(T) _<_ 2rs{*u~(2r T ) . (4.40) 

In the limit T---,oo, the construction implies 

d ( ' )  < "~ ,4(*) (4.41) 
0~) _ ~*~ + - - ( / ~ )  

The ratio of temporal to spatial entropy is thus 
bounded by the maximum propagation speed in 
the cellular automaton. The relation is consistent 
with the assignment of units to the spatial and 
temporal entropies mentioned above. 

The corresponding inequalities for mapping en- 
tropies are: 

d ( t )  < < "); A(x) 
- -  - -  " " ~  + ~ ( u )  

h(,) . . . .  < "~,,4(,)0~). (4.42) 

The quantity 2+ defined by eq. (4.37) gives the 
maximum speed with which any feature in a cellu- 
lar automaton may propagate. With many cellular 
automaton rules, however, almost all "features" 
propagate much more slowly. To define an appro- 
priate maximum average propagation speed, con- 
sider the effect after many time steps of changes in 
the initial state. Let G ( I x - x ' [ ;  t) denote the 
probability that the value of a site at position x '  is 
changed when the value of a site at position x is 
changed t time steps before. The form of 
G(Ix - x'l; t) for various cellular automaton rules 
is suggested by fig. 3. G(Ix - x'l; t) may be consid- 
ered as a Green function for the cellular automaton 
evolution. For large t, G(lx - x']; t) typically van- 
ishes outside a "cone" defined by Ix - x'[ = 2-+ t. 2"+ 
may then be considered as a maximum average 
propagation speed. In analogy with eqs. (4.41) and 
(4.42), one expects 

d ( , )  < < nJ- a(,) (4.43) . . . . .  + " L u )  • 

Mapping and temporal entropies thus vanish for 
cellular automata with zero maximum average 
propagation speed. Cellular automata in class 2 
have this property. 

The maximum average propagation speed 2"+ 
specifies a cone outside which G(Ix - x']; t) almost 
always vanishes. One may also define a minimum 
average propagation speed 2"_, such that 
G(Ix - x'[; t) > 0 for almost any Ix - x '  I < Z .  

The Green function G ( I x - x ' l ;  t) gives the 
probability that a particular site is affected by 
changes in a previous configuration. The total 
effect of changes may be measured by the "Ham- 
ming distance" H(t )  between configurations before 
and after the changes, defined as the total number 
of site values which differ between the 
configurations after t time steps. (H(t )  is anal- 
ogous to Lyapunov exponents for continuous dy- 
namical systems.) Changing the values of initial 
sites in a small region, H(t )  may be given as a space 
integral of the Green function, and for large t 
obeys the inequality 

H(t ) / t  < 2~-+, (4.44) 

to be compared with the result (4.43) obtained 
above. 

The definitions and properties of dimension 
given above suggests that the behaviour these 
quantities determines the degree of "chaotic" be- 
haviour associated with cellular automaton evo- 
lution. "Spatial chaos" occurs when a(x)-, n and " ( u )  f v ,  

"temporal chaos" when ,4(o ,,, ~'0~) F 0. Temporal chaos 
requires a nonzero maximum average propagation 
speed for features in cellular automaton patterns, 
and implies that small changes in initial conditions 
lead to effects ever-increasing with time. 

5. Class 1 cellular automata 

Class 1 cellular automata evolve after a finite 
number of time steps from almost all initial states 
to a unique homogeneous state, in which all sites 
have the same value. Such cellular automata may 



22 S. Wolfram/Universality and complexity in cellular automata 

be considered to evolve to simple "limit points" in 
phase space; their evolution completely destroys 
any information on the initial state. The spatial 
and temporal dimensions for such attractors are 
zero. 

Rules for class 1 cellular automata typically take 
the function F of eq. (2.1) to have the same value 
for almost all of its k (2r+1~ possible sets of argu- 
ments. 

Some exceptional configurations in finite class 1 
cellular automata may not evolve to a homoge- 
neous state, but may in fact enter non-trivial 
cycles. The fraction of such exceptional 
configurations appears to decrease very rapidly 
with the size N, suggesting that for infinite class 
1 cellular automata the set of exceptional 
configurations is always of measure zero in the set 
of all possible configurations. For (legal) class 1 
cellular automata whose usual final state has 
a~ = n, n # 0 (such as code 60 in fig. 1), the null 
configuration is exceptional for any size N, and 
yields ai = 0. 

6. Class 2 cellular automata 

Class 2 cellular automata serve as "filters" which 
generate separated simple structures from particu- 
lar (typically short) initial site value sequences*. 
The density of appropriate sequences in a particu- 
lar initial state therefore determines the statistical 
properties of the final state into which it evolves. 
(There is therefore no unique large-time (invariant) 
probability measure on the set of possible 
configurations.) Changes of site values in the initial 
state almost always affect final site values only 
within a finite range, typically of  order r. The 
maximum average propagation speed Z+ defined in 
section 4 thus vanishes for class 2 cellular auto- 
mata. The temporal and mapping (but not spatial) 
dimensions for such automata therefore also 
vanish. 

*They are thus of direct significance for digital image pro- 
cessing. 

Although ~- = 0 for all class 2 cellular automata, 
2 is often nonzero. Thus exceptional initial state 
may exist, from which, for example, unbounded 
growth may occur. Such initial states apparently 
occur with probability zero for ensembles of (spa- 
tially infinite) cellular automata with smooth 
probability measures. 

The simple structures generated by class 2 cellu- 
lar automata are either stable, or are periodic, 
typically with small periods. The class 2 rules with 
codes 8, 24, 40 and 56 illustrated in fig. 1 all 
apparently exhibit only stable perisistent struc- 
tures. Examples of class 2 cellular automata which 
yield periodic, rather than stable, persistent struc- 
tures include the k = 2, r--- 1 cellular automaton 
with rule number 108 [1], and the k = 3, r = 1 
totalistic cellular automaton with code 198. The 
periods of persistent structures generated in the 
evolution of class 2 cellular automata are usually 
less than k !. However, examples have been found 
with larger periods. One is the k = 2, r = 3 total- 
istic cellular automata with code 228, in which a 
persistent structure with period 3 is generated. 

The finiteness of the periods obtained at large 
times in class 2 cellular automata implies tha tsuch 
systems have ,~(') - k = 0, as deduced above from ' ~O~)  - -  , , ( ,u)  

the vanishing of ~'÷. The evolution of class 2 
cellular automata to zero (temporal) dimension 
attractors is analogous to the evolution of some 
continuous dynamical systems to limit cycles. 

The set of persistent structures generated by a 
given class 2 cellular automaton is typically quite 
simple. For some rules, there are only a finite 
number of persistent structures. For example, for 
the code 8 and code 40 rules of fig. 1, only the 
sequence 111 (surrounded by 0 sites) appears to be 
persistent. For code 24, 111 and 1111 are both 
persistent. Other rules yield an infinite sequence of  
peristent structures, typically constructed by a 
simple process. For example, with code 56 in fig. 
1, any sequence of two or more consecutive 1 sites 
is persistent. 

In general, it appears that the set of persistent 
structures generated by any class 2 cellular autom- 
aton corresponds to the set of words generated 
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by a regular grammar. A regular grammar [15-18] 
(or "sofic system" [19]) specifies a regular 
language, whose legal works may be recognized 
by a finite automaton, represented by a finite state 
transition graph. A sequence of  symbols (site val- 
ues) specifies a particular traversal of  the state 
transition graph. The traversal begins at a special 
"star t"  node; the symbol sequence represents a 
legal word only if the traversal does not end at 
an absorbing "s top"  node. Each successive symbol 
in the sequence causes the automaton to make a 
transition from one state (node) to one of  k others, 
as specified by the state transition graph. At each 
step, the next state of  the automaton depends only 
on its current state, and the current symbol read, 
but not on its previous history. 

The set of  configurations (symbol sequences) 
generated from all possible initial configurations 
by one time step of  cellular automaton evolution 
may always be specified by a regular grammar. To 
determine whether a particular configuration a °) 
may be generated after one time step of  cellular 
automaton evolution, one may attempt to con- 
struct an explicit predecessor a ~°) for it. Assume 
that a predecessor configuration has been found 
which reproduces all site values up to position i. 
Definite values a} °) for all j _< i - r are then deter- 
mined. Several of  the total of  k > sequences of  
values a } ° - ) r + l ,  • • •, ,-i+r+l'(°) may be possible. Each 
sequence may be specified by an integer 
q = Y.~'=0kJa!°_),+j+ t. An integer ~b i between 0 and 
2 ~2" may then be defined, with the qth binary bit in 
~O i equal to one if sequence q is allowed, and 0 
otherwise. Each possible value of  ~b may be consid- 
ered to correspond to a state in a finite automaton. 
~b = 0 corresponds to a "s top"  state, which is 
reached if and only if a °) has no predecessors. 
Possible values for ~i+r+~,,c°) are then found from ~; 
and the value of  _~0) These possible values then Ui+l.  

determine the value of  ff~+~. A finite state transi- 
tion graph, determined by the cellular automaton 
rules, gives the possible transitions ~ ' ~ ' i + l .  
Configurations reached after one time step of  
cellular automaton evolution may thus be recog- 
nized by a finite automaton with at most 2 k2r states. 

The set of  such configurations is thus specified by 
a regular grammar. 

In general, if  the value of  a given site after t steps 
of cellular automaton evolution depends on m 
initial site values, then the set of  configurations 
generated by this evolution may be recognized by 
a finite automaton with at most 2 k"  states. The 
value of  m may increase as 2rt, potentially re- 
quiring an infinite number of  states in the recog- 
nizing automaton, and preventing the specification 
of  the set of  possible configurations by a regular 
grammar. However, as discussed above, the value 
of  m for a class 2 cellular automaton apparently 
remains finite as t---,~. Thus the set of  
configurations which may persist in such a cellular 
automaton may be recognized by a finite automa- 
ton, and are therefore specified by a regular gram- 
mar. The complexity of  this grammar (measured 
by the minimum number of  states required in the 
state transition graph for the recognizing automa- 
ton) may be used to characterize the complexity of  
the large time behaviour of  the cellular automaton. 

Finite class 2 cellular automata usually evolve to 
short period cycles containing the same persistent 
structures as are found in the infinite case. The 
fraction of  exceptional initial states yielding other 
structures decreases rapidly to zero as N increases. 

7. Class 3 cellular automata 

Evolution of  infinite class 3 cellular automata 
from almost all possible initial states leads to 
aperiodic ("chaotic") patterns. After sufficiently 
many time steps, the statistical properties of  these 
patterns are typically the same for almost all initial 
states. In particular, the density of  nonzero sites 
typically tends to a fixed nonzero value (often 
close to 1/k).  In infinite cellular automata, 
"equilibrium" values of  statistical quantities are 
approached roughly exponentially with time, and 
are typically attained to high accuracy after a very 
few time steps. For  a few rules (such as the k = 2, 
r = 1 rule with rule number 18 [20]), however, 
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"defects" consisting of small groups of sites may 
exist, and may execute approximate random walks, 
until annihilating, usually in pairs. Such processes 
lead to transients which decrease with time only as 
t-~/2. 

Fig. 1 showed examples of the patterns gener- 
ated by evolution of some typical class 3 cellular 
automata from disordered initial states. The pat- 
terns range from highly irregular (as for code 10), 
to rather regular (as for code 12). The most 
obvious regularity is the appearance of  large trian- 
gular "clearings" in which all sites have the same 
value. These clearings occur when a "fluctuation" 
in which a sequence of consequence of  consecutive 
sites have the same value, is progressively de- 
stroyed by the effects of other sites. The rate at 
which "information" from other sites may "flow" 
into the fluctuation, and thus the slope of the 
boundaries of the clearing, may range from 1/k to 
r sites per time step. The qualitative regularity of 
patterns generated by some class 3 rules arises from 
the high density of  long sequences of correlated site 
values, and thus of triangular clearings. In general, 
however, it appears that the density of  clearings 
decreases with their size n roughly as tr -n. Different 
cellular automata appear to yield a continuous 
range of  a values. Those with larger a yield more 
regular patterns, while those with smaller tr yield 
more irregular patterns. No sharp distinction ap- 
pears to exist between class 3 cellular automata 
yielding regular and irregular patterns. 

The first column in fig. 9 shows patterns ob- 
tained by evolution with typical class 3 cellular 
automaton rules from initial states containing a 
single nonzero site. Unbounded growth, leading to 
an asymptotically infinite number of nonzero sites, 
is evident in all cases. Some rules are seen to give 
highly regular patterns, others lead to irregular 
patterns. 

The regular patterns obtained with rules such as 
code 2 are asymptotically self-similar fractal curves 
(cf. [11]). Their form is identical when viewed at 
different magnifications, down to length scales of  
order r sites. The total number of  nonzero sites in 
such patterns after t time steps approaches t d, 

where d gives the fractai dimension of the pattern. 
Many class 3 k = 2 rules generate a similar pattern, 
illustrated by codes 2 and 34 in fig. 9, with 
d = log2 3 ~ 1.59. Some rules yield self-similar pat- 
terns with other fractal dimensions (for example, 
code 38 yields d ~ 1.75), but all self-similar pat- 
terns have d < 2, and lead to an asymptotic density 
of sites which tends to zero as t d-2. 

Rule such as code 10 are seen to generate 
irregular patterns by evolution even from a single 
site initial state. The density of nonzero sites in 
such patterns is found to tend asymptotically to a 
nonzero value; in some, but not all, cases the value 
is the same as would be obtained by evolution from 
a disordered initial state. The patterns appear to 
exhibit no large-scale structure. 

Cellular automata contain no intrinsic scale 
beyond the size of neighbourhood which appears 
in their rules. A configuration containing a single 
nonzero site is also scale invariant, and any pattern 
obtained by evolution from it with cellular autom- 
aton rules must be scale invariant. The regular 
patterns in fig. 9 achieve this scale invariance by 
their self-similarity. The irregular patterns pre- 
sumably exhibit correlations only over a finite 
range, and are therefore effectively uniform and 
scale invariant at large distances. 

The second and third columns in fig. 11 shows 
the evolution of  several typical class 3 cellular 
automata from initial states with nonzero sites in 
a small region. In some cases (such as code 12), the 
regular fractal patterns obtained with single non- 
zero sites are stable under addition of further 
nonzero initial sites. In other cases (such as code 2) 
they are seen to be unstable. The numbers of rules 
yielding stable and unstable fractal patterns are 
found to be roughly comparable. 

Many but not all rules which evolve to regular 
fractal patterns from simple initial states generate 
more regular patterns in evolution from disordered 
initial states. Similarly, many but not all rules 
which produce stable fractal patterns yield more 
regular patterns from disordered initial states. For 
example, code 42 in figs. 1 and 9 generates 
stable fractal patterns from simple initial state, but 
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Fig. 10. Evolution o f  spatial measure entropies s~(X) as a 
function of  time for evolution of  the class 3 cellular au tomaton  
with code 12 illustrated in fig. 1 from a disordered initial state. 
The irreversibility of  cellular au tomaton  evolution results in a 
decrease of  the entropies with time. Rapid relaxation to an 
"equil ibrium" state is nevertheless seen. 

leads to an irregular patterns under evolution from 
a disordered state. (Although not necessary for 
such behaviour, this rule possesses the additivity 
property mentioned in section 2.) 

The methods of  section 4 may be used to analyse 
the general behaviour of  class 3 cellular automata 
evolving from typical initial states, in which all 

sites have nonzero values with nonzero probability. 
Class 3 cellular automata apparently always ex- 
hibit a nonzero minimum average propagation 
speed ~ .  Small changes in initial states thus 
almost always lead to increasingly large changes in 
later states. This suggests that both spatial and 
temporal dimensions ,~(x) and ,4(,) should be non- --(,u) '*(u) 

zero for all class 3 cellular automata. These dimen- 
sions are determined according to eqs. (4.15), 
(4.18), (4.22) and (4.23) by the limiting values of 
spatial and temporal entropies. 

A disordered or statistically random initial state, 
in which each site takes on its k possible values 
with equal independent probabilities, has maximal 
spatial entropy (x) s~(X) = 1 for all block lengths X. 
Fig. 10 shows the behaviour ofs~x)(x) as a function 
of  time for several block lengths X in the evolution 
of  a typical class 3 cellular automaton from a 
disordered (maximal entropy) initial state. The 
entropies are seen to decrease for a few time steps, 
and then to reach "equilibrium" values. The "equi- 
librium" values of  s~(X) for class 3 cellular auto- 
mata are typically independent of  the probability 
measure on the ensemble of  possible initial states, 
at least for "smooth"  measures. The decrease in 
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Fig. 11. Evolution of(a)  spatial and (b) temporal measure  entropies s~x)(X) and s~)(T) obtained at equilibrium by evolution of  several 
class 3 cellular au tomata  illustrated in fig. 1, as a function of the spatial and temporal block lengths X and T. The entropies are 
evaluated for the region indicated in figs. 7(a) and 7(b). The limit of  s~x)(X) as X ~  oo is the spatial measure  dimension of  the attractor 
for the system; the limit o f  s~O(T) as T--*oo is the temporal measure dimension. 
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entropy with time manifests the irreversible nature 
of the cellular automaton evolution. The decrease 
is found to be much greater for class 3 cellular 
automata which generate regular patterns (with 
many triangular clearings) than for those which 
yield irregular patterns. The more regular patterns 
require a higher degree of  self-organization, with 
correspondingly greater irreversibility, and larger 
entropy decrease. 

As discussed in section 4, the dependence of 
(x) s~u~(X) on X measures spatial correlations in cellu- 

lar automaton configurations. <x) s~)(X) therefore 
tends to a constant if X is larger than the range of 
any correlations between site values. In the pres- 
ence of correlations, s~l(X) always decreases with 
X. Available data from simulations provide re- 
liable accurate estimates for s~l(X ) only for 
0 < X < 8 .  Fig. 11 shows the behaviour of  the 
equilibrium value of s~(X) as a function of X over 
this range for several typical class 3 cellular auto- 
mata. For rules which yield irregular patterns the 
equilibrium value ofs~x)(x) typically remains >~ 0.9 
for X < 8. s~)(X) at equilibrium typically decreases 
much more rapidly for class 3 cellular automata 
which generate mole regular patterns. At least for 
small X, s~)(X) for such cellular automata typically 
decreases roughly as X -" with r / ~  0.1. 

The values of the spatial set entropy s~)(X) 
provide upper bounds on the spatial measure 
entropy s~x)(x). The distribution of  nonzero proba- 
bilities p~) for possible length X blocks is typically 
quite broad, yielding an s~)(X) significantly smaller 
than s~)(X). Nevertheless, the general behaviour of 
s~)(X) with X usually roughly follows s~x)(x), but 
with a slight X delay. 

As discussed in section 4, the set entropy s~)(X) 
attains its maximum value of  I if and only if all k x 
sequences of length X appear (with nonzero proba- 
bility) in evolution from some initial state. Notice 
that if s~x)(x)= 1 after one time step, then 
s~x)(X) = 1 at any time. In general, s~(X) takes on 
value 1 for blocks up to some critical length X¢ 
(perhaps infinite), as defined in eq. (4.13). 

Since a block of length X is completely deter- 
mined by a sequence of length X + 2 r  in the 

previous configuration, any predecessors for the 
block may in principle be found by an exhaustive 
search of all k x+2r possible length X+2r  se- 
quences. The procedure for progressive construc- 
tion of predecessors outlined in section 6 provides 
a more efficient procedure [21]. The critical block 
length X¢ is determined by the minimum number of  
nodes in the finite automaton state transition 
graph visited on any path from the "start" to 
"stop" node. The state transition graph is deter- 
mined by the set of transition rules ~ i ~ i + ~ .  
Starting with length 1 blocks, these transition rules 
may be found by considering construction of  all 
possible progressively longer blocks, but ignoring 
blocks associated with values ~i for which the 
transition rules have already been found. If  X¢ is 
finite, the "stop" node ~u = 0 is reached in the 
construction of length Xc blocks. Alternatively, the 
state transition graph may be found to consist of 
closed cycles, not including ~u = 0. In this case, Xc 
is determined to be infinite. Since the state transi- 
tion graph contains at most 2 *2r nodes, the value of 
X~ may be found after at most this many tests. The 
procedure thus provides a finite algorithm for 
determining whether all possible arbitrarily long 
sequences of site values may be generated by evo- 
lution with a particular cellular automaton rule. 

Table II gives the critical block lengths Xc for the 
cellular automata illustrated in fig. 1. Class 3 
cellular automata with smaller X¢ tend to generate 
more regular patterns. Those with larger X¢ pre- 
sumably give systematically larger entropies and 
their evolution is correspondingly less irreversible. 

For additive cellular automata (such as code 42 
in fig. 1 and table II), all possible blocks of any 
length X may be reached, and have exactly k 2r 
predecessors of length X + 2r. In this case, there- 
fore, evolution from a disordered initial state gives 
s~x)(x) = 1 for all X (hence X~ = ~) .  The equality 
of the number of predecessors for each block 
implies in addition in this case that s~x)(X)= 1, at 
least for evolution from disordered initial states. 
Hence for additive cellular automata 

d (x) = d~ x) = 1. (7. l) 
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Table II 
Values of critical block length X c for legal totalistic 
k = 2, r = 2 cellular automata as illustrated in fig. 1. For 
X < X~, all k x possible blocks of X site values appear 
with nonzero probability in configurations generated 
after any number of time steps in evolution from disor- 
dered initial states, while for X >__ X c, some blocks are 
absent, so that the spatial set entropy s~X)(X) < 1 

Code X~ Code X~ 

2 5 32 3 
4 12 34 5 
6 7 36 12 
8 12 38 7 

10 36 40 12 
12 5 42 oo 
14 5 44 5 
16 5 46 5 
18 5 48 5 
20 36 50 5 
22 12 52 22 
24 7 54 12 
26 12 56 7 
28 5 58 12 
30 3 60 5 

The configurations generated by additive cellular 
au tomata  are thus maximally chaotic. 

In general cellular au tomata  evolving according 
to eq. (2.1) yield s (x ) (X)= 1 for all X, so that 
d (x) = 1, if F is an injective (one-to-one) function of 
either its first or last argument (or can be obtained 
by composition of  functions with such a property).  
This may be proved by induction. Assume that all 
the blocks of  length X are reachable, with prede- 
cessors of  lengths X + 2r. Then form a block of 
length X + 1 by adding a site at one end. To obtain 
all possible length X + 1 blocks, the value a '  of  this 
additional site must range over k possibilities. Any 
predecessors for length X + 1 blocks must  be 
obtained by adding a (X + 2r + l)-th site (with 
value a) at one end. For  all length X + 1 blocks to 
be reachable, all values of  a '  must be generated 
when a runs over its k possible values, and the 
result follows. Notice that not all length X + 1 
blocks need have the same (nonzero) number  of  
predecessors,' so that the measure entropy s(~x~(X) 
may be less than the set entropy s(x)(x).  

While injectivity of  the rule function F for a 

cellular au tomaton  in its first or last arguments is 
sutficient to give d w = 1, it is apparently not 

necessary. A necessary condition is not known. 
In section 6 it was shown that the set of  

configurations obtained by cellular au tomaton 
evolution for a finite number  of  time steps from 
any initial state could be specified by a regular 
grammar.  In general the complexity of  the gram- 
mar  may increase rapidly with the number  of  time 
steps, potentially leading at infinite time to a set 
not specifiable by a regular grammar.  Such behav- 
iour may generically be expected in class 3 cellular, 
for which the average minimum propagat ion speed 
Z > 0 .  

As discussed in section 4, one may consider the 
statistics of  temporal as well as spatial sequences of  
site values. The temporal  aperiodicity of  the pat- 
terns generated by evolution of  class 3 cellular 
au tomata  from almost all initial states suggests 
that these systems should have nonvanishing tem- 
poral entropies s~)(T)  and nonvanishing temporal  
dimensions d~). Once again, the temporal entropies 
for blocks starting at progressively later times 
quickly relax to equilibrium values. Notice that the 
dimension n(,) obtained from the large T limit of  ~*(u) 
the s~)(T)  is always independent of  the starting 
times for the blocks. This is to be contrasted with 
the spatial dimensions d~ ,  which depend on the 
time at which they are evaluated. Just as for spatial 
entropies, it found that the equilibrium temporal 
entropies are essentially independent o f  probabili ty 
measure for initial configurations. 

The temporal entropies s~o(T ) decrease slowly 
with T. In fact, it appears that in all cases 

s~)(Z)  > sg~(Z) . (7.2) 

The ratio sl°)(Z)/slX~(Z)is,  however, typically much 
smaller than its maximum value (4.38) equal to the 
maximum propagat ion speed ~.+. Notice that the 
value of 2+ determines the slopes of  the edges of  
triangular clearings in the patterns generated by 
cellular au tomaton  evolution. 

At least for the class 3 cellular au tomata  in fig. 
1 which generate irregular patterns, the equi- 
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Fig. 12. Examples of  the evolution of a class 4 cellular automaton (totalistic code 20 k = 2, r = 2 rule) from several disordered initial 
states. Persistent structures are seen to be generated in a few cases. The evolution is truncated after 120 time steps. 

librium set entropy s t ° (T )=  1 for all T < 8 for 
which data are available. Note that the result 
s~°(T) = 1 holds for all T for any additive cellular 
automaton rule. One may speculate that class 3 
cellular automata which generate apparently irreg- 
ular patterns form a special subclass, characterized 
by temporal dimension d~t)= 1. 

For  class 3 cellular automata which generate 
more regular patterns, s~o(T ) appears to decrease, 
albeit slowly, with T0 Just as for spatial sequences, 
one may consider whether the temporal sequences 

which appear form a set described by a regular 

grammar. For  the particular case of  the k = 2, 
r = 1 cellular automaton with rule number 18, 
there is some evidence [21] that all possible tempo- 
ral sequences which contain no 11 subsequences 
may appear, so that N~'~(T)= F r  where Fr is the 
Tth Fibonacci number (Fr = Fr_ ~ + Fr-  2, 
F0 = F~ = 1). This implies that Nto(T ) ~ ck r (ok = 
(v/-5+ 1 ) / 2 -  ~ 1.618) for large T, suggesting a 
temporal set dimension d ~t) = log2 q~ ~ 0.694. 
In general, however, the set of  possible temporal 
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sequences is not expected to be described by a 
regular grammar. 

The nonvanishing value of  the average minimum 
propagation speed ~'_ for class 3 cellular automata, 
suggests that in all cases the value of a particular 
site depends on an ever-increasing number of 
initial site values. However, the complexity of  the 
dependence is not known. The value of a site after 
t time steps can always be specified by a table with 
an entry for each o f k  2~+t relevant initial sequences. 
Nevertheless, it is possible that a finite state autom- 
aton, specified by a finite state transition graph, 
could determine the value of sites at any time 

The behaviour of  finite class 3 cellular automata 
with additive rules was analysed in some detail in 
ref. 2. It was shown there that the maximal cycle 
length for additive cellular automata grows on 
average exponentially with the size N of the cellular 
automaton. Most cycles were found to have max- 
imal length, and the number of distinct cycles was 
found also to grow on average exponentially with 
N. The lengths of  transients leading to cycles was 
found to grow at most linearly with iV. The 
fraction of  states on cycles was found on average 
to tend a finite limit. 

For  most class 3 cellular automata,  the average 
cycle length grows quite slowly with N, although in 
some cases, the absolute maximum cycle length 
appears to grow rapidly. The lengths of  transients 
are typically short for cellular automata which 
generate more regular patterns, but often become 
very long as N increases for cellular automata 
which generate more irregular patterns. The frac- 
tions of  states on cycles are typically much larger 
for finite class 3 cellular automata which generate 
irregular patterns than for those which generate 
more regular patterns. This is presumably a 
reflection of the lower irreversibility and larger 

*Each site in this cellular automaton can take on one of two 
possible values; the time evolution rule involves nine site (type 
II) neighbourhoods. If the values of less than 2 or more than 
3 of the eight neighbours of a particular site are nonzero then 
the site takes on value 0 at the next time step; if 2 neighbouring 
sites are nonzero the site takes the same value as on the previous 
time steps; if exactly 3 neighbouring sites are nonzero, the site 
takes on value 1. 

attractor dimension found for the former case in 
the infinite size limit. 

8. Class 4 cellular automata 

Fig. 12 shows the evolution of  the class 4 
cellular automaton with k = 2, r = 2 and code 
number 20, from several disordered initial 
configurations. In most cases, all sites are seen to 
"die" (attain value zero) after a finite time. How- 
ever, in a few cases, stable or periodic structures 
which persist for an infinite time are formed. In 
addition, in some cases, propagating structures are 
formed. Fig. 13 shows the persistent structures 
generated by this cellular automaton from all 
initial configurations whose nonzero sites lie in a 
region of length 20 (reflected versions of  the last 
three structures are also found). Table III gives 
some characteristics of  these structures. An im- 
portant  feature, shared by other class 4 cellular 
automata, is the presence of  propagating struc- 
tures. By arranging for suitable reflections of  these 
propagating structures, final states with any cycle 
lengths may be obtained. 

The behaviour of  the cellular automata illus- 
trated in fig. 13, and the structures shown in fig. 14 
are strongly reminiscent of  the two-dimensional 
(essentially totalistic) cellular automaton known as 
the "Game of  Life"* (for references see [1]). The 
Game of Life has been shown to have the im- 
portant  property of  computational universality. 
Cellular automata may be viewed as computers, in 
which data represented by initial configurations is 
processed by time evolution. Computational uni- 
versality (e.g. [15-18]) implies that suitable initir" 
configurations can specify arbitrary algorithm 
procedures. The system can thus serve as a gener~ 
purpose computer,  capable of evaluating a_ 
(computable) function. Given a suitable encoding, 
the system may therefore in principle simulate any 
other system, and in this sense may be considered 
capable of  arbitrarily complicated behaviour. 

The proof  of  computational universality for the 
Game of Life [22] uses the existence of cellular 
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Fig. 13. Persistent structures found in the evolution of  the class 4 cellular automaton illustrated in fig. 12 from initial states with 
nonzero sites in a region of  20 or less sites. Reflected versions of  the last three structures are also found, Some properties of  the 
structures are given in table III. These structures are almost sufficient to provide components necessary to demonstrate a universal 
computation capability for this cellular automaton. 

Ill/X=5 .40 

.0 ~/~."/'z° r 

0 .5  

0 I I 
50  100 

T 

Fig. 14. Fraction of  configurations in the class 4 cellular 
automaton of  figs. 12 and 13 which evolve to the null 
configuration after Ttime steps, from initial states with nonzero 
sites in a region of  length less than X (translates of  
configurations are not included). The asymptotic "halting 
probability" is around 0.93; 7~  of  initial configurations gener- 
ate the persistent structures of  fig. 13 and never evolve to the 
null configuration. 

automaton structures which emulate components 
(such as "wires" and " N A N D  gates") of a stan- 
dard digital computer. The structures shown in fig. 
14 represent a significant fraction of  those neces- 
sary. A major missing element is a configuration 

(dubbed the "glider gun" in the Game of  Life) 
which acts like a clock, and generates an infinite 
sequence of propagating structures. Such a 
configuration would involve a finite number of 
initial nonzero sites, but would lead to unbounded 
growth, and an asymptotically infinite number of  
nonzero sites. There are however indications that 
the required initial configuration is quite large, and 
is very difficult to find. 

These analogies lead to the speculation that class 
4 cellular automata are characterized by the capa- 
bility for universal computation, k = 2, r = 1 cellu- 
l a rau tomata  are too simple to support universal 
computation; the existence of class 4 cellular auto- 
mata with k = 2, r = 2  (cf. figs. 12 and 13) and 
k --3, r = 1 suggests that with suitable time evo- 
lution rules even such apparently simple systems 
may be capable of universal computation. 

There are important limitations on predictions 
which may be made for the behaviour of systems 
capable of  universal computation. The behaviour 
of such systems may in general be determined in 
detail essentially only by explicit simulation of 
their time evolution. It may in general be predicted 
using other systems only by procedures ultimately 
equivalent to explicit simulation. No finite algo- 
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Table III 
Persistent structures arising from initial configurations with length less than 20 
sites in the class 4 totalistic cellular automaton with k = 2, r = 2 and code number 
20, illustrated in figs. 12, 13 and 14. qb(X) gives the fraction of  initial 
configurations with nonzero sites in a region less than X sites in length which 
generate a particular structure. When an initial configuration yields multiple 
structures, each is included in this fraction. 

Period Minimal predecessor $(10) th(20 ) 

2 10010111 (151) 0.027 0.024 
9R 10111011 (187) 0.012 0.0061 
1 10111101 (189) 0.014 0.0075 
22 11000011 (195) 0.018 0.017 
9L 11011101 (221) 0.012 0.0061 
1R 1001111011 (635) 0.0020 0.00066 
IL 1101111001 (889) 0.0020 0.00066 
38 11110100100101111 (125231) 0 2.9 x 10 -5 
4 10010001011011110111 (595703) 0 7 .6x  10 6 
4 10010101001010110111 (610999) 0 7.6 × 10 -6 
4 10011000011111101111 (624623) 0 7.6 x 10 6 

rithm or procedure may be devised capable of 
predicting detailed behaviour in a computationally 
universal system. Hence, for example, no general 
finite algorithm can predict whether a particular 
initial configuration in a computationally universal 
cellular automaton will evolve to the null 
configuration after a finite time, or will generate 
persistent structures, so that sites with nonzero 
values will exist at arbitrarily large times. (This is 
analogous to the insolubility of the halting prob- 
lem for universal Turing machines (e.g. [15-18]).) 
Thus if the cellular automaton of figs. 12 and 13 is 
indeed computationally universal, no finite algo- 
rithm could predict whether a particular initial 
state would ultimately "die", or whether it would 
ultimately give rise to one of the persistent struc- 
tures of fig. 13. The result could not be determined 
by explicit simulation, since an arbitrarily large 
time might elapse before one of the required states 
was reached. Another universal computer could 
also in general determine the result effectively only 
by simulation, with the same obstruction. 

If class 4 cellular automata are indeed capable of 
universal computation, then their evolution in- 
volves an element of unpredictability presumably 
not present in other classes of cellular automata. 

Not only does the value of a particular site after 
many time steps potentially depend on the values 
of an increasing number of initial site values; in 
addition, the value cannot in general be determined 
by any "short-cut" procedure much simpler than 
explicit simulation of the evolution. The behaviour 
of a class 4 cellular automaton is thus essentially 
unpredictable, even given complete initial informa- 
tion: the behaviour of the system may essentially be 
found only by explicitly running it. 

Only infinite cellular automata may be capable 
of universal computation; finite cellular automata 
involve only a finite number of internal states, and 
may therefore evaluate only a subset of all com- 
putable functions (the "space-bounded" ones). 

The computational universality of a system im- 
plies that certain classes of general predictions for 
its behaviour cannot be made with finite algo- 
rithms. Specific predictions may nevertheless often 
be made, just as specific cases of generally non- 
computable function may often be evaluated. 
Hence, for example, the behaviour of all 
configurations with nonzero sites in a region of 
length 20 or less evolving according to the cellular 
automaton rules illustrated in figs. 12 and 13 has 
been completely determined. Fig. 14 shows the 
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fraction of initial configurations which evolve to 
the null state within T time steps, as a function of 
T, for various sizes X of the region of nonzero sites. 
For large X and large T, it appears that the fraction 
of configurations which generate no persistent 
structures (essentially the "halting probability") is 
approximately 0.93. It is noteworthy that the 
curves in fig. 14 as a function of T appear to 
approach a fixed form at large X. One may specu- 
late that some aspects of the form of such curves 
may be universal to all systems capable of universal 
computation. 

The sets of persistent structures generated by 
class 4 cellular automata typically exhibit no sim- 
ple patterns, and do not appear to be specified, for 
example, by regular grammars. Specification of 
persistent structures by a finite procedure is neces- 
sarily impossible if class 4 cellular automata are 
indeed capable of universal computation. Strong 
support of the conjecture that class 4 cellular 
automata are capable of universal computation 
would be provided by a demonstration of the 
equivalence of systematic enumeration of all per- 
sistent structures in particular class 4 cellular auto- 
mata to the systematic enumeration of solutions to 
generally insoluble Diophantine equations or word 
problems. 

Although one may determine by explicit con- 
struction that specific cellular automata are capa- 
ble of universal computation, it is impossible to 
determine in general whether a particular cellular 
automaton is capable of universal computation. 
This is a consequence of the fact that the structures 
necessary to implement universal computation 
may be arbitrarily complicated. Thus, for example, 
the smallest propagating structure might involve 
an arbitrarily long sequence of site values. 

For class 1, 2 and 3 cellular automata, 
fluctuations in statistical quantities are typically 
found to become progressively smaller as larger 
numbers of sites are considered. Such systems 

*This feature allows practical simulation of  such cellular 
automata to be made more efficient by storing information on 
the evolution of  the specific sequences of  sites which occur with 
larger probabilities (cf. [23]). 

therefore exhibit definite properties in the "infinite 
volume" limit. For class 4 cellular automata, it 
seems likely that fluctuations do not decrease as 
larger number of sites are considered, and no 
simple smooth infinite volume limit exists. Im- 
portant qualitative effects can arise from special 
sequences appearing with arbitrarily low proba- 
bilities in the initial state. Consider for example the 
class 4 cellular automaton illustrated in figs. 12 and 
13. The evolution of the finite sequences in this 
cellular automaton shown in fig. 12 (and many 
thousands of other finite sequences tested) suggests 
that the average density of nonzero sites in 
configurations of this cellular automaton should 
tend to a constant at large times. However, in a 
sufficiently long finite initial sequence, there should 
exist a subsequence from which a "glider gun" 
structure evolves. This structure would generate an 
increasing number of nonzero sites at large times, 
and its presence would completely change the 
average large time density. As a more extreme 
exar~ple, it seems likely that a sufficiently long (but 
finite) initial sequence should evolve to behave as 
a self-reproducing "organism", capable of even- 
tually taking over its environment, and leading to 
completely different large time behaviour. Very 
special, and highly improbable, initial sequences 
may thus presumably result in large changes in 
large time properties for class 4 cellular automata. 
These sequences must appear in a truly infinite 
(typical) initial configuration. Although their den- 
sity is perhaps arbitrarily low, the sequences may 
evolve to structures which come to dominate the 
statistical properties of the system. The possibility 
of such phenomena suggest that no smooth infinite 
volume exists for class 4 cellular automata. 

Some statistical results may be obtained from 
large finite class 4 cellular automata, although the 
results are expected to be irrelevant in the truly 

infinite volume limit. The evolution of most class 
4 cellular automata appears to be highly 
irreversible*. This irreversibility is reflected in the 
small set of persistent structures usually generated 
as end-products of the evolution. Changes in small 
regions of the initial state may affect many sites at 
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large times. There are however very large 
fluctuations in the propagation speed, and no 
meaningful averages may be obtained. It should be 
noted that groups of class 4 cellular automata with 
different rules often yield qualitatively similar be- 
haviour, and similar sets of persistent structures, 
suggesting further classification. 

The frequency with which a particular structure 
is generated after an infinite time by the evolution 
of a universal computer from random (disordered) 
input gives the "algorithmic probability" p~ [24] 
for that structure. This algorithmic probability has 
been shown to be invariant (up to constant multi- 
plicative factors) for a wide class of universal 
computers. In general, one may define an "evo- 
lutionary probability" pE(t) which gives the proba- 
bility for a structure to evolve after t time steps 
from a random initial state. Complex structures 
formed by cellular automata will typically have 
evolutionary probabilities which are initially small, 
but later grow. As a simple example, the proba- 
bility for the sequence which yields a period 9 
propagating structure in the cellular automaton of 
figs. 12 and 13 begins small, but later increases to 
a sufficiently large value that such structures are 
almost always generated from disordered states of 
2000 or more sites. In a much more complicated 
example, one may imagine that the probability for 
a self-reproducing structure begins small, but later 
increases to a substantial value. Structures whose 
evolutionary probability becomes significant only 
after a time > T  may be considered to have 
"logical depth" [25] T. 

9. Discussion 

Cellular automata are simple in construction, 
but are capable of very complex behaviour. This 
paper has suggested that a considerable univer- 
sality exists in this complex behaviour. Evidence 
has been presented that all one-dimensional cellu- 
lar automata fall into four basic classes. In the first 
class, evolution from almost all initial states leads 
ultimately to a unique homogeneous state. The 

second class evolves to simple separated structures. 
Evolution of the third class of cellular automata 
leads to chaotic patterns, with varying degrees of 
structure. The behaviours of these three classes of 
cellular automata are analogous to the limit points, 
limit cycles and chaotic ("strange") attractors 
found in continuous dynamical systems. The 
fourth class of cellular automata exhibits still more 
complicated behaviour, and its members are con- 
jectured to be capable of universal computation. 

Even starting from disordered or random initial 
configurations, cellular automata evolve to gener- 
ate characteristic patterns. Such self-organizing 
behaviour occurs by virtue of the irreversibility of 
cellular automaton evolution. Starting from al- 
most any initial state, the evolution leads to attrac- 
tors containing a small subset of all possible states. 
At least for the first three classes of cellular auto- 
mata, the states in these attractors form a Cantor 
set, with characteristic fractal and other dimen- 
sions. For the first and second classes, the states in 
the attractor may be specified as sentences with a 
regular grammar. For the fourth class, the attrac- 
tors may be arbitrarily complicated, and no simple 
statistical characterizations appear possible. 

The four classes of cellular automata may be 
distinguished by the level of predictability of their 
"final" large time behaviour given their initial 
state. For the first class, all initial states yield the 
same final state, and complete prediction is trivial. 
In the second class, each region of the final state 
depends only on a finite region of the initial state; 
knowledge of a small region in the initial state thus 
suffices to predict the form of a region in the final 
state. In the evolution of the third class of cellular 
automata, the effects of changes in the initial state 
almost always propagate forever at a finite speed. 
A particular region thus depends on a region of the 
initial state of ever-increasing size. Hence any 
prediction of the "final" state requires complete 
knowledge of the initial state. Finally, in the fourth 
class of cellular automata, regions of the final state 
again depend on arbitrarily large regions of the 
initial state. However, if cellular automata in the 
class are indeed capable of universal computation, 
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then this dependence may be arbitrarily complex, 
and the behaviour of the system can be found by 
no procedure significantly simpler than direct sim- 
ulation. No meaningful prediction is therefore 
possible for such systems. 
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