VOLUME 56, NUMBER 16

PHYSICAL REVIEW LETTERS

21 APRIL 1986

Cellular-Automata Supercomputers for Fluid-Dynamics Modeling

Norman Margolus, Tommaso Toffoli, and Gérard Vichniac

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 16 December 1985)

We report recent developments in the modeling of fluid dynamics, and give experimental results
(including dynamical exponents) obtained with cellular automata machines. Because of their locali-
ty and uniformity, cellular automata lend themselves to an extremely efficient physical realization;
with a suitable architecture, an amount of hardware resources comparable to that of a home com-
puter can achieve (in the simulation of cellular automata) the performance of a conventional super-

computer.

PACS numbers: 47.90.+a, 02.70.+d, 06.50.Mk, 51.10.+y

A cellular automaton is a discrete dynamical system
consisting of finite-state variables, or cells, arranged on
a uniform grid. The overall dynamics is specified by a
finite rule, by which at every time step each cell com-
putes its new state from the current state of its neigh-
borhood. Surprisingly enough, cellular automata can
faithfully model continuum systems such as fluids; un-
like differential equations, they can be realized exactly
by digital hardware.

Modeling with cellular automata is poorly supported
by conventional scientific computers, whose architec-
ture is optimized for the arithmetic treatment of con-
tinuum models. With a more appropriate architecture
one can easily gain a performance factor of at least
10000 in the simulation of cellular automata; this gain
is of such magnitude that new classes of conceptual
models have become computationally accessible.

The idea of using discrete lattices for modeling
physical phenomena is not new. However, recent
theoretical and technological developments have
turned models based specifically on cellular automata
into practical computational tools. On one hand,
methods have been found for constructing cellular au-
tomata that are microscopically reversible (and thus
support a realistic thermodynamics), obey exact con-
servation laws, and model continuum phenomena.!-1°
On the other hand, general-purpose machines well

suited to such fine-grained modeling are becoming
generally available.!%!7

Hydrodynamic  modeling.—Differential equations
such as the Navier-Stokes equation capture important
macroscopic aspects of fluid dynamics; however, what
one implements on a digital computer is not the equa-
tion itself, but a finitary model obtained from it by
truncation and roundoff.

It is possible to arrive at an analogous macrodynam-
ics starting directly from a discrete microscopic
model—a cellular-automaton idealization of the
motion and collisions of individual particles. Models
of this kind can give rise to the Navier-Stokes equation
in the macroscopic limit,? as had been indicated as ear-
ly as 1973 by Pomeau and co-workers"? in a theoreti-
cal analysis of a lattice-gas model (hereafter, HPP gas).

Frames (a), (b), and (c) of Fig. 1 are taken directly
from the display screen of CAM-6,!'! a cellular-
automata machine. They show the evolution of an
HPP gas consisting of 2'° sites (256x256) each of
which can hold up to four particles (one traveling in
each of four allowed directions). The evolution rule is
simply that particles travel straight at unit velocity
(one cell per time step) unless exactly two particles
collide head on, in which case they scatter at right an-
gles.

The initial state (a) was constructed with a bit occu-
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FIG. 1. Wave propagation in the HPP gas. To enhance contrast, only sites that contain either three or four particles are

shown.
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pancy of 50% except in the middle, where we have a
block of 4096 particles (100% occupancy in an area of
32x32 sites). Thus, the simulation involves about
130000 particles. Figures 1(b) and 1(c) show the start
that thirty and ninety steps-0.5 and 1.5 seconds at
CAM’s rate of sixty frame updates per second.
Despite the fact that particles travel in only four direc-
tions the wave is circular, and moves at a speed that
agrees with the theoretically predicted? value of 1/+/2.

The HPP rule is exactly reversible. To go back in
time from frame Fig. 1(c) one need only transform the
state of every cell so as to interchange the ‘‘up’ and
‘““down’’ particle information, and similarly for ‘‘right’’
and ‘‘left.”” If one then proceeds with the same rule
the simulation will retrace its steps back to Fig. 1(a).

Boundary conditions such as sources, sinks, and
obstacles of any shape are introduced by use of addi-
tional bits of state at each site to mark selected areas,
and extension of the rule so as to take the values of
these bits into account.!?

Time correlation functions.—We have measured the
time autocorrelation function for velocity at a given
site,
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where C is an initial configuration, ¢ is the transition
rule (such as HPP), af(C) has a value of 1 or 0
depending on whether or not there is a particle moving
in the g direction at the (i) site in the configuration
C, a is the average particle occupancy (per site) for
each direction, and there is an implied summation
over all N sites and all Q allowed directions.

The actual correlation experiments were performed
with use of a cellular-automata realization of the HPP
rule!® that spreads each site over four one-bit cells.* 1°
Figure 2, curve a, shows the measured values of v(7)
for the HPP model, with T=2!3 and a density of
Finite-size effects show up past r =256 (the
space is 256 x 256 and has periodic boundary condi-
tions), but already before that point the predicted'®
asymptotic exponent of — -§- is attained within + 3%.
The same exponent was obtained for @ =+, @ = 3.

The exponent —%, which is characteristic of one-
dimensional gases,!’ arises from extra conservations
(momentum on each row and column). The “TM”
gas!® 203 similar model which also uses only four
directions—avoids these extra conservations by having
collisions occur with a nonzero impact parameter
(resulting in right-angle scattering from two adjacent
rows to two adjacent columns, or vice versa). Results
for this gas are shown in Fig. 2, curve b, for the same
density a as for HPP but (to improve the statistics) for
T =21%; note that the asymptotic exponent for this gas
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FIG. 2. Time correlation function, v (1), for (curve a) the
HPP gas, (curve b) the TM gas, and (curve ¢) the FHP gas;
@ = in all cases.

is close to —1, characteristic of a true two-dimensional
gas (v~ =92 for d =2).2' The same exponent was
obtained fora =+, a = 7.

As is noted in Ref. 9, a shadow of the /2 rotational
symmetry persists in the macroscopic behavior of the
HPP gas (and possibly also in TM). A more refined
hydrodynamical model (the ‘“‘FHP gas’®??), which
uses a hexagonal grid, avoids this problem.?® Figure 2,
curve ¢, shows the behavior of v(¢) for this gas, with
T =2'7 and again with the density @ = +. The asymp-
totic exponent appears to be close to —2, which is
surprisingly large and calls for a theoretical ex-
planation—the same exponent was obtained for a = %,
a= % As above, this experiment used an implemen-
tation in which collision sites are spread out—in this
case over four two-bit cells.!?

Hardware.—These experiments were performed
with a machine (CAM-6!!) containing an amount of
digital logic comparable to that of a home computer.
This machine achieves, in the simulation of cellular
automata, a performance comparable to that of a
Cray-1; several modules can be ganged together—with
a proportionate increase in performance—for larger
two-dimensional arrays or for three-dimensional simu-
lations.

To achieve maximum speed, the rule is internally
stored as a lookup table. The rule as written by the
user consists of a few lines describing in a high-level
language how the new value of a cell depends on the
current values of its neighbors. The problem of
translating such a description into an appropriate look-
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up table is taken care of by the machine’s designers;
since the efficiency of this compilation process in no
way affects the speed of the simulation, one’s full at-
tention can be kept on conceptual issues.

The above performance is achieved with a dedicated
architecture but conventional circuitry and com-
ponents. In this architecture two-dimensional planes
are processed serially (with a substantial amount of
pipelining); a third dimension is achieved by stacking
planes and operating them in parallel.’® Since sites in
each plane are updated one by one, and corresponding
sites in adjacent planes are handled at the same time in
a ‘‘lockstep’ fashion, communication between planes
entails a few wires rather than the millions of physical
interconnections required by a fully parallel implemen-
tation. This approach makes extensive simulation of
three-dimensional models of hydrodynamics immedi-
ately practical.

One may simultaneously run (or different planes of
the same machine) two copies of the same system that
are identical except for a given spatial or temporal
offset between them. Since sites are processed serial-
ly, correlations between corresponding sites are easily
detected and accumulated ‘‘on the fly,”’ thus eliminat-
ing the need for storage- and computation-intensive
postprocessing. This is, in fact, how the time-
correlation experiments presented in this paper were
conducted.

Conclusions.—Cellular-automata machines are well
suited to a large class of computational models of
physics having both theoretical and practical interest.
The performance they offer provides strong en-
couragement for the development of models of this
kind; conversely, the usefulness of these models will
stimulate technology to provide further performance
in this direction.

Because of the speed-of-light constraint, locality of
interconnection is an important advantage of the
cellular-automaton paradigm. A fully parallel im-
plementation of specific two-dimensional cellular auto-
mata having 10'? sites and an update cycle of 100 ps
for the whole array will be feasible in one decade and
within easy reach in two; one using 10'® sites (the
Avogadro number ‘‘in two dimensions’’) is not incon-
ceivable. Thus, we can look forward to computational
tools that directly span the gap between the microscopic
and the macroscopic world.
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FIG. 1. Wave propagation in the HPP gas. To enhance contrast, only sites that contain either three or four particles are
shown.



