
T 
he invention of a totally dis- 
crete model for natural phenom- 
ena was made by Ulam and von 
Neumann in the early fifties and 

was developed to the extent possible at 
the time. A few years earlier von Neu- 
mann had designed the architecture for 
the first serial digital computers contain- 
ing stored programs and capable of mak- 
ing internal decisions. These machines 
are built of electronic logic devices that 
understand only packets of binary bits. 
Hierarchies of stored translators arrange 
them into virtual devices that can do or- 
dinary or radix arithmetic at high speed. 
By transcribing continuum equations into 
discrete form, using finite difference tech- 
niques and their variants, serial digital 
computers can solve complex mathemat- 
ical systems such as partial differential 
equations. Since most physical systems 

PART I 
BACKGROUND FOR 

LATTICE GAS AUTOMATA 
The lattice ,qas automaton is an approach 
to computing fluid dynamics that is still 
in its infancy. In this three-part article 
one of the inventors of the mode! presents 
its theoretical foundations and its promise 
as a general approach to solving partial 
differential equations and to parallel com- 
puting. Readers less theoretically inclined 
might begin by reading "Calculations Us- 
ing Lattice Gas Techniques" at the end 
of Part 11. This sidebar offers a summary 
of the model's advantages and limitations 
and a ,qraphic display of two- and three- 
dimensional lattice gas simulations. 

with large numbers of degrees of freedom 

can be described by such equations, se- 
rial digital machines equipped with large 

memories have become the standard way 
to simulate such phenomena. 

As the architecture of serial machines 
developed, it became clear to both Ulam 
and von Neumann that such machines 
were not the most natural or powerful 
way to solve many problems. They were 
especially influenced by biological exam- 
ples. Biological systems appear to per- 
form computational tasks using methods 
that avoid both arithmetical operations 
and discrete approximations to continu- 
ous systems. 

Though motivated by the complex in- 
formation processing of biological sys- 
tems. Ulam and von Neumann did not 
study how such systems actually solve 
tasks. Biological processes have been 
operating in hostile environments for a 
long time, finding the most efficient and 
often devious way to do something, a 
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way that is also resistant to disturbance 
by noise. The crucial principles of their 
operation are hidden by the evolutionary 
process. Instead, von Neumann chose 
the task of simulating on a computer the 
least complex discrete system capable of 
self-reproduction. It was Ulam who sug- 
gested an abstract setting for this problem 
and many other totally discrete models, 
namely, the idea of cellular spaces. The 
reasoning went roughly like this. 

The question is simple: Find a mini- 
mal logic structure and devise a dynam- 
ics for it that is powerful enough to simu- 
late complex systems. Break this up into 
a series of sharper and more elementary 
pictures. We begin by setting up a collec- 
tion of very simple finite-state machines 
with, for simplicity, binary values. Con- 
nect them so that given a state for each 
of them, the next state of each machine 
depends only on its immediate environ- 
ment. In other words, the state of any 
machine will depend only on the states 
of machines in some small neighborhood 
around it. This builds in the constraint 
that we only want to consider local dy- 
namics. 

We will need rules to define how states 
combine in a neighborhood to uniquely 
fix the state of every machine, but these 
can be quite simple. The natural space 
on which to put all this is a lattice, with 
elementary, few-bit, finite-state machines 
placed at the vertices. The rules for up- 
dating this array of small machines can 
be done concurrently in one clock step, 
that is, in parallel. 

One can imagine such an abstract ma- 
chine in operation by thinking of a fishnet 
made of wires. The fishnet has some reg- 
ular connection geometry, and there are 
lights at the nodes of the net. Each light 
can be on or off. Draw a disk around 
each node of the fishnet, and let it have a 
1-node radius. On a square net there are 
four lights on the edge of each disk, on 
a triangular net six lights (Fig. 1). The 
next state of the light at the center of the 
disk depends on the state of the lights on 

CELLULAR SPACES 

Fig. 1. Two examples of fishnets made of wires 

with lights at the nodes. The lights are either 

on or off. In each example a disk with a radius 

of 1 node is drawn around one of the lights. 

The next state of the light at the center de- 

pends on the states of the lights on the edge of 
the disk and on nothing else. Thus these are 

examples of nearest-neighbor-connected cel- 
lular spaces. 

the edge of the disk and on nothing else. 
Imagine all the disks in the fishnet ask- 
ing their neighbors for their state at the 
same time and switching states accord- 
ing to a definite rule. At the next tick of 
an abstract clock, the pattern of lights on 
the fishnet would in general look differ- 
ent. This is what Ulam and von Neumann 
called a nearest-neighbor-connected cel- 
lular space. It is the simplest case of a 
parallel computing space. You can also 
see that it can be imaged directly in hard- 
ware, so it is also the architecture for a 
physical parallel computing machine. 

We have not shown that such a device 
can compute. At worst, it is an elaborate 
light display. Whether or not such a 
cellular space can compute depends on 

the definition of computation. The short 
answer is that special cases of fishnets 
are provably universal computers in the 
standard Turing machine sense; that is, 
they can simulate the architecture of any 
other sequential machine. 

But there are other interpretations of 
computation that lie closer to the idea of 
simulation. For any given mathematical 
situation, we want to find the minimum 
cellular space that can do a simulation of 
it: At what degree of complexity does 
repeated iteration of the space, on which 
are coded both data and a solution algo- 
rithm, possess the power to come close to 
the solution of a complex problem? This 
depends on the complexity or degrees of 
freedom present in the problem. 

An extreme case of complexity is phys- 
ical systems with many degrees of free- 
dom. These systems are ordinarily de- 
scribed by field theories in a continuum 
for which the equations of motion are 
highly nonlinear partial differential equa- 
tions. Fluid dynamics is an example, and 
we will use it as a theoretical paradigm 
for many "large" physical systems. Be- 
cause of the high degree of nonlinearity, 
analytic solutions to the field equations 
for such systems are known only in spe- 
cial cases. The standard way to study 
such models is either to perform experi- 
ments or simulate them on computers of 
the usual digital type. 

Suppose a cellular space existed that 
evolved to a solution of a fluid system 
with given boundary conditions. Sup- 
pose also that we ask for the simplest 
possible such space that captured at least 
the qualitative and topological aspects of 
a solution. Later, one can worry about 
spaces that agree quantitatively with or- 
dinary simulations. The problem is three- 
fold: Find the least complex set of rules 
for updating the space; the simplest ge- 
ometry for a neighborhood; and a method 
of analysis for the collective modes and 
time evolution of such a system. 

At first sight, modeling the dynamics of 
large systems by cellular spaces seems far 
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too difficult to attempt. The general prob- 
lem of a so-called "inverse compiler"- 
given a partial differential system, find 
the rules and interconnection geometry 
that give a solution-would probably use 
up a non-polynomial function of comput- 
ing resources and so be impractical if not 
impossible. Nevertheless cellular spaces 
have been actively studied in recent years. 
Their modem name is cellular automata, 
and specific instances of them have sim- 
ulated interesting nonlinear systems. But 
until recently there was no example of a 
cellular automaton that simulated a large 
physical system, even in a rough, quali- 
tative way. 

Knowing that special cases of cellu- 
lar automata are capable of arbitrarily 
complex behavior is encouraging, but not 
very useful to a physicist. The impor- 
tant phenomenon in large physical sys- 
tems is not arbitrarily complex behav- 
ior, but the collective motion that de- 
velops as the system evolves, typically 
with a characteristic size of many ele- 
mentary length scales. The problem is to 
simulate such phenomena and, by using 
simulations, to try to understand the ori- 
gins of collective behavior from as many 
points of view as possible. Fluid dy- 
namics is filled with examples of collec- 
tive behavior-shocks, instabilities, vor- 
tices, vortex streets, vortex sheets, tur- 
bulence, to list a few. Any detennin- 
istic cellular-automaton model that at- 
tempts to describe non-equilibrium fluid 
dynamics must contain in it an itera- 
tive mechanism for developing collec- 
tive motion. Knowing this and using 
some very basic physics, we will con- 
struct a cellular automaton with the ap- 
propriate geometry and updating rules for 
fluid behavior. It will also be the sim- 
plest such model. The methods we use 
to do this are very conservative from the 
viewpoint of recent work on cellular au- 
tomata, but rather drastic compared to 
the approaches of standard mathematical 
physics. Presently there is a large gap 
between these two viewpoints. The sim- 

ulation of fluid dynamics by cellular au- uum description. A flow has physical 
tomata shows that there are other comple- conservation laws built-in, at least con- 
mentary and powerful ways to model phe- servation of mass and momentum. With 
nomena that would normally be the exclu- a few additional remarks one can include 
sive domain of partial differential equa- conservation of energy. The basic strat- 
tions. egy for deriving the Euler and Navier- 

Stokes equations of fluid dynamics is to 

The Example of Fluid Dynamics 

Fluid dynamics is an especially good 
large system for a cellular automaton for- 
mulation because there are two rich and 
complementary ways to picture fluid mo- 
tion. The kinetic picture (many simple 
atomic elements colliding rapidly with 
simple interactions) coincides with our in- 
tuitive picture of dynamics on a cellular 
space. Later we will exploit this analogy 
to construct a discrete model. 

The other and older way of approach- 
ing flow phenomena is through the partial 
differential equations that describe col- 
lective motions in dissipative fluids-the 
Navier-Stokes equations. These can be 
derived without any reference to an un- 
derlying atomic picture. The derivation 
relies on the idea of the continuum; it 
is simpler to grasp than the kinetic pic- 
ture and mathematically cleaner. Because 
the continuum argument leads to the cor- 
rect functional form of the Navier-Stokes 
equations, we spend some time describ- 
ing why it works. The continuum view 
of fluids will be called "coming down 
from above," and the microphysical view 
"coming up from below7' (Fig. 2). In 
the intersection of these two very differ- 
ent descriptions, we can trap the essential 
elements of a cellular-automaton model 
that leads to the Navier-Stokes equations. 
Through this review we wish to show that 
cellular automaton models are a natural 
and evolutionary idea and not an inven- 
tion come upon by accident. 

imbed these conservation laws into state- 
ments about special cases of the gen- 
eralized Stokes theorem. We use the 
usual Gauss and Stokes theorems, de- 
pending on dimension, and apply them 
to small surfaces and volumes that are 
still large enough to ignore an underly- 
ing microworld. The equations of fluid 
dynamics are derived with no reference 
to a ball-bearing picture of an underly- 
ing atomic world, but only with a serene 
reliance on the idea of a smooth flow 
in a continuum with some of Newton's 
laws added to connect to the observed 
world. As a model (for it is not a the- 
ory), the Navier-Stokes equations are a 
good example of how concepts derived 
from the intuition of daily experience can 
be remarkably successful in building ef- 
fective phenomenological models of very 
complex phenomena. It is useful to go 
through the continuum derivation of the 
Euler and Navier-Stokes equations pre- 
sented in "The Continuum Argument" for 
several reasons: First, the reasoning is 
short and clear; second, the concepts in- 
troduced such as the momentum flux ten- 
sor, will appear pervasively when we pass 
to discrete theories of fluids; third, we 
learn how few ingredients are really nec- 
essary to build a fluid model and so mark 
out that which is essential-the role of 
conservation laws. 

It is clear from its derivation that the 
Euler equation describing inviscid flows 
is essentially a geometrical equation. The 
extension to the full Navier-Stokes equa- 
tions, for flows with dissipation, contains 

Coming down from Above- only a minimal reference to an underlying 

The Continuum Description fluid microphysics, through the stress-rate 
of strain relation in the momentum stress 

The notion of a smooth flow of some tensor. So we see that continuum reason- 
quantity arises naturally from a contin- ing alone leads to nonlinear partial differ- 
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ential equations for large-scale physical 
observables that are a phenomenological 
description of fluid flow. This description 
is experimentally quite accurate but the- 
oretically incomplete. The coupling con- 
stants that determine the strength of the 
nonlinear terms-that is, the transport co- 
efficients such as viscosity-have a direct 
physical interpretation in a microworld 
picture. In the continuum approach how- 
ever, these must be measured and put in 
as data from the outside world. If we do 
not use some microscopic model for the 
fluid, the transport coefficients cannot be 
derived from first principles. 

Solution Techniques-The Creation 
of a Microworld. The Navier-Stokes 
equations are highly nonlinear; this is 
prototypical of field-theoretical descrip- 
tions of large physical systems. The non- 
linearity allows analytic solutions only 
for special cases and, in general, forces 
one to solve the system by approximation 
techniques. Invariably these are some 
form of perturbation methods in what- 
ever small parameters can be devised. 
Since there is no systematic way of apply- 
ing perturbation theory to highly nonlin- 
ear partial differential systems, the anal- 
ysis of the Navier-Stokes equations has 
been, and still remains, a patchwork of 
ingenious techniques that are designed to 
cover special parameter regimes and lirn- 
ited geometries. 

After an approximation method is cho- 
sen, the next step toward a solution is to 
discretize the approximate equations in a 
form suitable for use on a digital com- 
puter. This discretization is equivalent to 
introducing an artificial microworld. Its 
particular form is fixed by mathematical 
considerations of elegance and efficiency 
applied to simple arithmetic operations 
and the particular architecture of avail- 
able machines. So, even if we adopt the 
view that the molecular kinetics of a fluid 
is unimportant for describing the general 
features of many fluid phenomena, we are 
nevertheless forced to describe the sys- 

Fig. 2. Both the continuum view of fluids 
and the atomic picture lead to the Navier- 
Stokes equations but not without approxima- 

tern by a microworld with a particular 
microkinetics. The idea of a partial dif- 
ferential equation as a physical model is 
tied directly to finding an analytic solu- 
tion and is not particularly suited to ma- 
chine computation. In a sense, the geo- 
metrically motivated continuum picture is 
only a clever and convenient way of en- 
coding conservation laws into spaces with 
which we are comfortable. 

tions (dashed lines). The text emphasizes how 
cellular-automaton models embody the essen- 
tials of both points of view. 

Coming up from Below- 
The Kinetic Theory Description 

Kinetic theory models a fluid by us- 
ing an atomic picture and imposing New- 
tonian mechanics on the motions of the 
atoms. Atomic interactions are controlled 
by potentials, and the number of atomic 
elements is assumed to be very large. 
This attempt at fluid realism has an imme- 

continued on page 181 
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continued from page 178 

diate difficulty. We are unable to specify 
completely the initial state of the system 
or to follow its microdynamics. It fol- 
lows that we cannot use a microdynamics 
that is this detailed. The obvious strategy 
is to make a smoothened model that re- 
duces the number of degrees of freedom 
in the system to just a few. This reduc- 
tion assumes maximum ignorance of the 
details of the system below some time and 
distance scale and replaces exact data on 
events by probabilistic outcomes. Mea- 
surements are assumed to be average val- 
ues of quantities over large ensembles of 
representative systems. The assumption 
is that after a sufficiently long time these 
average observables are a close descrip- 
tion of the fluid. 

This approach seems very familiar and 
obvious from elementary courses in sta- 
tistical mechanics. But it is unclear how 
to go from a statistical-mechanical de- 
scription of an atomic system to the pre- 
diction of the details of collective motions 
that come from the evolution of that sys- 
tem. Fidelity to the atomic picture brings 
with it considerable mathematical diffi- 
culties. As we will see below and in 
"The Hilbert Contraction," the success of 
the derivation of the Navier-Stokes equa- 
tions from the kinetic theory picture- 
that one derives the Navier-Stokes equa- 
tions with the correct coefficients and not 
some other macrodynamics-is justified 
after the fact. 

Kinetic Theory and the Boltzmann 
Transport Equation. Complete infor- 
mation on the statistical description of a 
fluid or gas at, or near, thermal equi- 
librium is assumed to be contained in 
the one-particle phase-space distribution 
function f ( t ,  r, 'T) for the atomic con- 
stituents of the system. The variables 
t and r are the time and space coordi- 
nates of the atoms and T stands for all 
other phase-space coordinates (for exam- 
ple, momenta). In this rapid overview of 
kinetic transport theory, we will not dwell 
on the many and difficult questions raised 

by this description but keep to a level of 
precision consistent with a general under- 
standing of the basic ideas. 

The distribution function f is basically 
a weighting function that is used to define 
the mean values of physical observables. 
The relation 

defines the density function N (t, r)  for 
the particles in the system over all space. 
Therefore NdV is the mean number of 
particles in the volume dV. Here dV is 
a physical volume oc L~ whose character- 
istic length L is much larger than lm, the 
mean free path of a particle, and much 
smaller than Lg , some global length, such 
as the edge of a container for the whole 
gas. Thus lm Ã L << LÃˆ  

The basic equation of kinetic theory 
is the evolution equation for f (t, r ,  T) in 
the presence of gas collisions. Imagine 
first that the system has no collisions. 
Conservation of phase-space volumes, or 
Liouville's theorem, tells us that 

where d/dt is a total derivative. In an 
isolated system with no external fields, 
we can expand the total derivative as 

(We use the convention that repeated in- 
dices are summed over.) Equation 3 de- 
fines the free-streaming operator, which 
represents the local change in f per unit 
time caused by the independent motion of 
particles alone. 

Now imagine a simple isolated gas 
with collisions. If C (f) is a function that 
models the rate of change of the distribu- 
tion function f caused by collisions, then 
C (f)  dVdT is the rate of change per unit 
time of the number of molecules in the 
phase-space volume element dVdV. The 

Liouville statement now is modified tn 
become the transport equation: 

where C (f) is in general a highly nonlin- 
ear function off .  

Boltzmann first gave a simple approx- 
imation for the collision operator, which 
can be thought of as a gain-minus-loss 
(G - L) operator. A straightforward phys- 
ical argument defining its general struc- 
ture is presented below and is due to Lan- 
dau. 

The Boltzmann Form of the Collision 
Term. Let the particles in a two-body 
collision process have incoming distribu- 
tion functions gi and gi and outgoing dis- 
tribution functions gi and g^. Fixing at- 
tention on particle 1, assume that before 
colliding it occupies a phase-space region- 
dT1, and after collision it occupies dT\; 
similarly, particle 2 occupies dTi_ before 
colliding and d& afterwards. If particle 
1 undergoes a collision, d& will not in 
general be in dT l ,  and particle 1 is said 
to be lost from dT l .  From these consid- 
erations we can compute the functional 
structure of the general loss term for a 
binary collision. 

The probability of loss will be propor- 
tional to the product of four terms: (1) 
the number of particles of type 1 already 
in the volume, namely gi; (2) the num- 
ber of type-2 particles that enter the vol- 
ume from some phase-space range dF2, 
namely, g2dr2; (3) the total volume of 
allowed outgoing phase space, d m 2 ;  
and finally (4) a probability for the colli- 
sion process Pg{I'}. Now we sum over 
all possible allowed volumes of phase 
space. So the total number of losses L 
in the volume dV and from dT due to 
binary collision processes is 

Similarly, particle gain into the phase 
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space volume dl? can only come from re- 
versed channel processes g\, & + g ~ ,  gy., 
with fixed F i ,  and summed over all of Fi , 
F2, and F2, so 

The Boltzmann form for C( f )  is the net 
flow into the region, which is Q - L. Us- 
ing this form, we get the Boltzmann trans- 
port equation, a highly nonlinear integro- 
differential equation: 

In Part I1 we will use the same reason- 
ing to construct the Boltzmann equation 
for the discrete lattice gas. The explicit 
form of the lattice gas collision operator 
is much simpler than in standard kinetic 
models. 

Note that the Boltzmann form for the 
(Q - L) collision term implicitly assumes 
only two-body collisions. It also as- 
sumes the collisions are pairwise statis- 
tically independent events occurring at 
a single point with detailed, or at most 
semi-detailed, balance symmetry for col- 
lision probabilities. 

Solutions to the Boltzmann Trans- 
port Equation. Even though the Boltz- 
mann equation is intractable in general, 
by using entropy arguments (Boltzmann's 
H theorem), the following can be stated 
about possible functional forms for f ,  the 
one-particle distribution function. If the 
system is uniform in space, any form for 
f will relax monotonically to the global 
Maxwell-Boltzmann form: 

in which the macroscopic variables p, 
v, and T (density, macrovelocity, and 
temperature) are independent of position, 
or global. In the non-equilibrium case, 
with a soft space dependence, any distri- 
bution function will relax monotonically 

RANGE OF THE BOLTZMANN TRANSPORT EQUATION 

The rigorous range of physical parameters in which the Boltzrnann transport 
equation is mathematically meaningful is 

N -  ̂QO, a -  ̂0 such that (NV') -  ̂1;' 

where N is the number of particles, 
m is the mass of each particle, 
a is the range of the force or the effective interaction ball, 
Im is the mean free path, 
K is a constant. 

These conditions imply a dilute gas, binary collisions, and slowly varying spatial 
dependence (that is, slow space gradients). As an additional axiom we require 
that there be no long-range forces in the sense of photon excitations, etc. 

in velocity space to a local Maxwell- 
Boltzmann form. This means that p, v, 
and T will depend on space as well as 
time. These local distribution functions 
are solutions to the Boltzmann transport 
equation. For the non-uniform case, one 
gets a picture of the full solution as an en- 
semble of local Maxwell-Boltzmann dis- 
tributions covering the description space 
of the fluid, with some gluing conditions 
providing the consistency of the patching. 

Recovering Macrodynamics-The Eu- 
ler Equations. If we assume a simple 
fluid and neglect all dissipative processes 
(viscosity, heat transfer, etc.), we can 
quickly derive the Euler equations (pre- 
sented in "The Continuum Argument") 
from the Boltzmann transport equation. 
But first we need the notion of average 
quantities and some observations about 
collisions in a dissipation-free system. 

As before, let p(t, r)  = f f ( t ,  r ,  T) dI' 
be the density field of the gas. Then a 
mean gas velocity v = f v'f (t, r ,  I?) dT, 
where v' is a microvelocity. We will use v 
as a macroscopic variable that character- 

izes cells whose length L in any direction 
is much, much greater than the mean free 
path in the gas, lm; that is, L ^> lm.  

Since, by assumption, collisions pre- 
serve conservation laws exactly, the mo- 
ments of C (  f) ,  in particular the inte- 
grals f C (  f ) d r  and f v  C (  f ) d F ,  are 
equal to zero (similarly for any conserved 
quantity). We use this fact by integrat- 
ing the Boltzmann equation in two ways: 
/' (B.E.) dl? and f v(B.E.) d r  (where B.E. 
stands for the Boltzmann equation). The 
first integral gives the continuity equa- 
tion: 

9tp + Qi(pvi) = 0. (6)  

The second integral gives the momentum 
tensor equation: 

where the momentum flux tensor nik is 
given by 

In order to derive the Euler equation 
for ideal gases with the usual form for 
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the momentum flux tensor, we need to 
assume that each region in the gas has 
a local Maxwell-Boltzmann distribution. 
With this assumption one can show that 
the momentum flux tensor in Eq. 7 has 
the following form: 

where p is the pressure. This form of 
IIlk gives the same Euler equation that we 
found by general continuum arguments. 
(We will see in Part 11 that the form of 

for the totally discrete fluid is not so 
simple but depends upon the geometry of 
the underlying lattice. Again by assuming 
a form for the local distribution function 
(the appropriate form will turn out to be 
Ferrni-Dirac rather than Boltzmann), IIIk 
will reduce to a form that gives the lattice 
Euler equation.) 

Recovering the Navier-Stokes Equa- 
tion. The derivation of the Navier-Stokes 
equation from the kinetic theory picture 
is more involved and requires us to face 
the full Boltzmann equation. Hilbert ac- 
complished this through a beautiful argu- 
ment that relies on a spatial-gradient per- 
turbation expansion around some single- 
particle distribution function fr assumed 
to be given at to.  In "The Hilbert Con- 
traction" we discuss the main outline of 
his argument emphasizing the assump- 
tions involved and their limitations. Here 
we will summarize his argument. Hilbert 
was able to show that the evolution off 
for times t > to  is given in terms of its 
initial data at to by the first three moments 
of f ,  namely the familiar macroscopic 
variables p (density), v (mean velocity), 
and T (temperature). In other words, he 
was able to contract this many-degree-of- 
freedom system down to a low-dimen- 
sional descriptive space whose variables 
are the same as those used in the usual hy- 
drodynamical description. The beauty of 
Hilbert's proof is that it is constructive. 
It explicitly displays a recursive closed 
tower of constraint relations on the mo- 
ments of f  that come directly from the 

THE HIL NT 
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Boltzmann equation. The zero-order re- 
lation gives the Euler equations and the 
second-order relation gives the Navier- 
Stokes equations. However, Hilbert's 
method is an asymptotic functional ex- 
pansion, so that the higher order terms 
take one away from ordinary fluids rather 
than closer to them. Nevertheless, solv- 
ing explicitly for the terms in the func- 
tional expansion provides a way of eval- 
uating transport coefficients such as vis- 
cosity. (See the "Hilbert Contraction" for 
more discussion.) 

Summary of the Kinetic Theory Pic- 
ture. Our review of the kinetic theory 
description of fluids introduced a num- 
ber of important concepts: the idea of 
local thermal equilibrium; the character- 
ization of an equilibrium state by a few 
macroscopic obsemables; the Boltzmann 
transport equation for systems of many 
identical objects (with ordinary statistics) 
in collision; and the fact that a solution 
to the Boltzmann transport equation is 
an ensemble of equilibrium states. In 
"The Hilbert Contraction" we introduced 
the linear approximation to the Boltz- 
maim equation with which one can de- 
rive the Navier-Stokes equations for sys- 
tems not too far (in an appropriate sense) 
from equilibrium in terms of these same 
macroscopic obsemables (density, pres- 
sure, temperature, e t~.) .  We then outlined 
a method for calculating the coupling 
constants in the Navier-Stokes system- 
that is, the strengths of the nonlinear 
terms-as a function of any particular mi- 
crodynarnics. 

This review was intended to give a fla- 
vor for the chain of reasoning involved. 
We will use this chain again in the to- 
tally discrete lattice world. However, just 
as important as understanding the kinetic 
theory viewpoint is keeping in mind its 
limitations. In particular, notice that per- 
turbation theory was the main tool used 
for going from the exact Boltzmann trans- 
port equation to the Navier-Stokes equa- 
tions. We did not discover more pow- 
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erful techniques for finding solutions to 
the Navier-Stokes equations than we had 
before. To go from the Boltzmann to 
the Navier-Stokes description, we made 
many smoothness assumptions in various 
probabilistic disguises; in other words, 
we recreated an approximation to the con- 
tinuum. It is true one could compute (at 
least for relatively simple systems) the 
transport coefficients, but in a sense these 
coefficients are a property of microkinet- 
ics, not macrodynamics. 

We are at a point where we can ask 
some questions about the emergence of 
macrodynamics from microscopic phys- 
ics. It is clear by now that microscopic 
conservation laws, those of mass, mo- 
mentum, and energy are crucial in fix- 
ing the form of large-scale dynamics. 
These are in a sense sacred. But one 
can question the importance of the de- 
scription of individual collisions. How 
detailed must micromechanics be to gen- 
erate the qualitative behavior predicted 
by the Navier-Stokes equations? Can 
it be done with simple collisions and 
very few classes of them? There exists 
a whole collection of equations whose 
functional form is very nearly that of 
the Navier-Stokes equations. What mi- 
croworlds generate these? Do we have 
to be exactly at the Navier-Stokes equa- 
tions to generate the qualitative behavior 
and numerical values that we derive from 
the Navier-Stokes equations or from real 
fluid experiments? Is it possible to de- 
sign a collection of synthetic microworlds 
that could be considered local-interaction 
board games, all having Navier-Stokes 
macrodynamics? In other words, does 
the detailed microphysics of fluids get 
washed out of the macrodynamical pic- 
ture under very rapid iteration of the de- 
terministic system? If the microgame is 
simple enough to update it deterministi- 
cally on a parallel machine, is the density 
of states required to see everything we 
see in ordinary Navier-Stokes simulations 
much smaller than the density of atoms in 
real physical fluids? If so, these synthetic 

INGREDIENTS FOR THE EMERGENCE OF MACRODYNAM1CS 

1. Local Thermodynamic Equilibrium 
in a Small Region Rm 

Local thermodynamic ensemble is 
described by one-particle distribution function 
of the form pe-E(p+"'/T 

Sm is typically on the order of a mean free path 

2. Patching of Local Ensembles Using 
Microscopic Conservation Laws 

Form of the boundary conditions 
is dictated by conservation laws 

/ 

3. Emergence of Dynamic 
Scale Separation 

SG >> Su >> Sm 

SG - global scale 

SM scale of collective motion 

Sm N microscale 

Fig. 3. Three ingredients are needed for the 
emergence of macrodynamics: local thermo- 
dynamic equilibrium, conservation laws, and 

microworlds become a potentially power- 
ful analytic tool. 

Our approach in building a cellular 
space is to move away from the idea 
of a fluid state and focus instead on the 
idea of the macrodynamics of a many- 
element system. In abstract terms, we 
want to devise the simplest determinis- 
tic local game made of a collection of 
few-bit, finite-state machines that has the 

scale separation between microkinetics and 
collective motion. 

Navier-Stokes equations as its macrody- 
namical description. From our brief look 
at kinetic transport theory, we can ab- 
stract the essential features of such a 
game (Fig. 3). The many-element sys- 
tem must be capable of supporting a 
notion of local thermodynamic equilib- 
rium and must also include local micro- 
scopic conservation laws. The state of 
a real fluid can be imagined as a col- 
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lection of equilibrium distribution func- 
tions whose macroscopic parameters are 
unconstrained. These distribution func- 
tions have a Maxwell-Boltzmann form. 
e E ( p > " ) I T .  If these distribution functions 
are made to deviate slightly from equilib- 
rium, then local conservation laws impose 
consistency conditions among their pa- 
rameters, which become constrained vari- 
ables. These consistency conditions are 
the macrodynamical equations necessary 
to put a consistent equilibrium function 
description onto the many-element sys- 
tem. In physical fluids they are the 
Navier-Stokes equations. This is the gen- 
eral setup that will guide us in creating a 
lattice model. 

Evolution of Discrete 
Fluid Models 

Continuous Network Models. The Na- 
vier-Stokes equations, however derived, 
are analytically intractable, except in a 
few special cases for especially clean ge- 
ometries. Fortunately, one can avoid 
them altogether for many problems, such 
as shocks in certain geometries. The 
strategy is to rephrase the problem in a 
very simple phase space and solve the 
Boltzmann transport equation directly. If 
a single type of particle is constrained 
to move continuously only along a reg- 
ular grid, the Boltzmann equation is so 
tightly constrained that it has simple ana- 
lytic solutions. In the early 1960s Broad- 
well and others applied this simplified 
method of analysis to the dynamics of 
shock problems. Their numerical results 
agreed closely with much more elabo- 
rate computer modeling from the Navier- 
Stokes equations. However, there was no 
real insight into why such a calculation 
in such a simplified microworld should 
give such accurate answers. The accu- 
racy of the limited phase-space approach 
was considered an anomaly. 

Discrete Skeletal Models. The next 
development in discrete fluid theory was 
a discrete modification of the continuous- 
speed network models of the Broadwell 
class. By forming a loose analogy to the 
structure of the Ising model (spins on a 
lattice), Hardy, de Pazzis, and Pomeau 
created the first minimalist fluid model on 
a two-dimensional square lattice. It was 
a simple, binary-valued, nearest-neighbor 
gas with a single species of molecule, 
limited to binary collisions. The new 
feature was a totally discrete velocity and 
state space for the gas. Particles hopped 
from one site to the next without a notion 
of continuous movement between sites. 
Particles were confined to the vertices 
of the network, and the velocity vector 
of each particle could point in only one 
of four directions. Since there was no 
natural way to deal with bound states, 
these authors imposed the arbitrary rule 
that the maximum number of particles 
occupying any vertex be four. 

This simple model possessed remark- 
able properties including local therrno- 
dynamic equilibrium and the emergence 
of a scale separation; that is, the typ- 
ical collective motion scale L is much 
greater than the microscopic mean free 
path lm; L >> lm. However, the macrody- 
namics that emerged was not that of the 
Navier-Stokes equations but a more com- 
plex one with unphysical features. The 
square model was the first example of 
rich dynamics emerging wholly on a cel- 
lular space. It had all the right ingredi- 
ents except one: isotropy under the ro- 
tation group of the lattice. The momen- 
tum flux tensor must reduce to a scalar 
for isotropy, but this is impossible with 
a square lattice. In two dimensions the 
neighborhood that has the minimal re- 
quired symmetry and tiles the plane is a 
hexagonal neighborhood. In Part I1 we 
will present the simple hexagonal model, 
analyze it mathematically, and describe 
the simulations of fluid phenomena that 
have been done so far. 
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We can now list the ingredients we need to build the simplest cellular-space world 
with a dynamics that reproduces the collective behavior predicted by the com~ressible 

The only way to make this hexagonal lattice gas simpler is to lower the rotation 
symmetry of the lattice, remove collision rules, or break a conservation law. In a 
two-dimensional universe with boundaries, any such modification will not give Navier- 

/stokes dynamics. Left as it is. the model will. Adding attributes to the model, such 

incompressible Navier-Stokes equations: 

A population of identical particles, each with unit mass and moving with the same 
average speed c. 

A totally discrete phase space (discrete values of x ,  y and discrete particle-velocity 
directions) and discrete time t .  Discrete time means that the particles hop from 
site to site. 
A lattice on which the particles reside only at the vertices. In the simplest case 
the lattice is regular and has a hexagonal neighborhood to guarantee an isotropic 
momentum flux tensor. We use a triangular lattice for convenience. 
A minimum set of collision rules that define symmetric binary and triple collisions 
such that momentum and particle number are conserved (Fig. 4). 
An exclusion principle so that at each vertex no two particles can have identical 
velocities. This limits the maximum number of particles at a vertex to six, each one 
having a velocity that points in one of the six directions defined by the hexagonal 
neighborhood. 
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as different types of particles, different speeds, enlarged neighborhoods, or weighted 
collision rules, will give Navier-Stokes behavior with different equations of state and 
different adjustable parameters such as the Reynolds number (see the discussion in Part 
111). The hexagonal model defined by the five ingredients listed above is the simplest 
model that gives Navier-Stokes behavior in a sharply defined parameter regime. 

At this point it is instructive to look at the complete table of allowed states for 
the model (Fig. 5). The states and collision rules can be expressed by Boolean logic 

Fig 4. SCATTERING RULES FOR SIMPLE HEXAGONAL MODEL 

Scattering Rules 

Two-Body Scattering Rules 

Three-Body Scattering Rules 

Other Configurations Don't Scatter 

For Example 

Only a head-on collision of 
two particles causes scatter- 
ing, that is, the particles change 
direction by Â±60Â The par- 
ticles then continue to move 
at constant speed (one node 
per time stop) in the new di- 
rection. 

Three particles colliding at 1 20Â 
angles to each other change 
directions by 60' in the scat- 
tering process. All other con- 
figurations of these particles 
do not affect particle direc- 
tion. 

Results of Scattering Plus Transport 

Pure Transport 

In most configurations parti- 
cles do not scatter, that is, 
they do not change direction 
but are simply transported at 
constant speed. 

pi - 
-- 

t 
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operations with the two allowed values taken as 0 and 1. From this organization scheme 
we see that the hexagonal lattice gas can be seen as a Boolean parallel computer. In 
fact, a large parallel machine can be constructed to implement part or all of the state 
table locally with Boolean operations alone. Our simulations were done this way and 
provide the first example of the programming of a cellular-automaton, or cellular-space, 
machine that evolves the dynamics of a many-degrees-of-freedom, nonlinear physical 
system. 

STATE TABLE FOR HEXAGONAL MODEL 

Right Three Bits 

Scattering Rules for Simple 
Hexagonal Model in 6-Bit Notation 

Two-Body Rule 

Three-Body Rule 
(010, 101) -.Ã‘Ã‘ (101, 010) 

Additional Rules for Extended 
Hexagonal Model 

Four-Body Rule 

Fig. 5. All possible states of the hexagonal k t -  and the maximally occupied state shown in the are written beside the table. All other states do 
tice gas are shown in  the state table. Each lower right hand corner of the table is written not result in  scattering. The extended hexag- 
state can be expressed in 6-bit notation (a (111, 111). Collision states for the simplest onal model includes scattering rules for four- 
combination of 3 right bits and 3 left bits). For hexagonal model are shown in  red and shaded body states (shaded in  gray). The extended 
example, the empty state is written (000,000) in gray. The scattering rules for these states model lowers the viscosity of the lattice gas. 
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PARTICLE DIRECTIONS 
IN THE HEXAGONAL MODEL 

Fig. 6. The velocity vector of each particle 

can point in one of six possible directions. All 
particles have the same speed c. 

Theoretical Analysis of the Discrete Lattice Gas 

Before presenting the results of simulations with the lattice-gas automaton, we will 
analyze its behavior theoretically. The setup we work on is a regular triangular grid 
with hexagonal neighborhood. The natural explicit coordinate system for a single-speed, 
six-directional world (Fig. 6) is the set of unit vectors: 

{cos (y) ,  sin (y)} ,  f f =  Q-6. 

One never requires this much detail except to work out explicit tensor structures and 
scalar products particular to the hexagonal model case, but the index conventions 
are important to avoid disorientation. From now on the Greek indices a, /3, - . label 

. .A A 

lattice direction indices; i ,  j, k, . . . are lattice unit vectors and i , j , k label space indices 
( x i ,  XT.. . . .); on a square lattice we have r  = ( x i ,  x2)  = ( x ,  y ). 

The first thing we will look at is pure transport on the lattice with no collisions. 
Because the basic space is a discrete lattice with a fundamental lattice spacing, rather 
than a continuum, a shadow of the lattice is induced into the coupling constant of the 
theory, namely the viscosity. This lattice effect is not obvious, but we will make it so 
by looking at transport on the lattice in detail. As a corollary we will derive the usual 
Euler equations for the "macroscopic" flow of the lattice gas. 

To do a quick analysis on lattice models we lift the restriction of a deterministic 
gas and pass to a probabilistic description familiar from kinetic theory; then we can use 
familiar stochastic and kinetic theory tools outlined in Part I of this article. In going 
from a continuous to a discrete probabilistic formalism we introduce the lattice form 
of the single-particle distribution function by making the identifications 

and 

To begin we write the master equation for fg in the absence of collisions. The 
master equation expresses conservation of probability. For simplicity we write it for a 
square lattice with the following conventions: ng(r +&, t )  = number of particles in the 
direction /3 at the node r  +b at time t .  The master equation for the system, neglecting 
collisions and written in a continuum notation for convenience, is 

f p ( r + h , ^ k ) - f p ( r , t ) = O ,  with h = i & , k = d , ,  

where di  , dx << 1. 

If we expand the first term in the master equation out to o 2 ( h ,  k )  using the Taylor 
series expansion f  (xo + h ,  yo + k )  = xm\ $(hax + kQy)Af (xo, yo) + Rm , we obtain 
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To lowest order in h and k ,  we have 

which has the standard form of the kinetic theory transport equation in the absence of 
collisions. If we include collisions, the full Boltzmann transport equations schematically 
become 

aff3 + if3 - Vf/3 = (̂ (f 

where Cg( f )  is the collision operator on the lattice. The form of the lattice collision 
operator will tell us a great deal about how the model works, but for the moment we 
just look at the general structure of the "macroscopic" equations for the lattice gas to 
the lowest order in the lattice expansion parameters. 

As in standard kinetic theory, the usual zero integrals of the motion hold, since 
the lattice model is assumed to have some kind of detailed balance (that is, microscopic 
reversibility of reaction pathways). Accordingly xf3 CD( f )  = 0 and xf3 iPCp( f )  = 0 
for a skeletal gas. Following the kinetic theory procedure, we write the continuity and 
momentum equations that follow from these conditions as: 

and 

where the tensor I I i j  is defined as 

So far we have kept only the leading terms of the Taylor series expansion in 
the scaling factors that relate to the discreteness of the lattice. It's easy to show that 
keeping quadratic terms in this lattice-size expansion leaves the continuity equation 
invariant but alters the momentum equation by introducing a free-streaming correction 
to the measured viscosity. This rather elegant way of viewing this correction was first 
developed by D. Levermore. The correction comes from breaking the form of a Galilean 
covariant derivative and is a geometrical effect. Specifically, to second order in the 
lattice size expansion, the momentum equation does not decompose simply into factors 
of these covariant derivatives but instead the expansion introduces a nonvanishing 
covariant-breaking term: 

Noncovariant term = x{(iti)i aia, + ((io); a)}ipfp.  
f3 

This term is of the same order as those terms that contribute to the viscosity. Later we 
will show how to use the Chapman-Enskog expansion to compute an explicit form for 
the lattice-gas viscosity. 

The Chapman-Enskog Expansion and the Direct Expansion. The form of I I i j  
depends on the form off,  the solution to the full lattice Boltzmann transport equation. 
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By Hilbert's construction we know that an efficient expansion can be developed in terms 
of the collision invariants of the model up to powers of terms linear in the gradient 
of the macroscopic velocity. In whatever perturbation expansion off  we choose, the 
coefficients in the expansion are fixed by solving for them under the Lagrange multiplier 
constraints of mass and momentum conservation: p = fP and (pv) = Ep iPfD. In 
the simple hexagonal model there is no explicit mechanism provided for storing energy 
in internal state space, so there is no independent energy equation. 

For the lattice case, the Chapman-Enskog version of Hilbert's expansion reduces 
to an expansion in all available scalar products using the vectors 6, v and the vector 

* 
operator 9 . The expansion is made around the global equilibrium solution for v = 0, 

+ 
which we will call NP and terms are kept up to those linear in 9 . The relevant scalar 
products are 

The systematic expansion becomes 

In the usual kinetic theory approach the coefficients a and f3 can be found by 
neglecting collisions and ,131, the gradient term, can be determined only by an explicit 
solution to the full Boltzmann equation including collision terms. In this way one 
obtains the viscosity in terms of PI. For the discrete lattice, however, both Q and 
Ql depend on the explicit form of the solution to the full Boltzmann equation with 
collisions. We also need that form to recover the correction to the raw viscosity that, 
as mentioned in the last section, comes from pure translation effects on the lattice. 

Given that we have to use the full solution to the Boltzmann transport equation 
almost immediately, we now derive its structure, find the general and equilibrium 
solution, and then use a direct expansion to fix both /3 and PI. In the process we will 
recover the Euler equations for inviscid flow and the Navier-Stokes equations for the 
flow with dissipation. 

The Lattice Collision Operator and the Solution to the Lattice Boltzmann 
Transport Equation. We will write down the discrete form of the Boltzmann equation, 
especially noting the collision operator, for a number of reasons. First, writing the 
explicit form of the collision kernel builds up an intuition of how the heart of the model 
works; second, we can show in a few lines that the Fermi-Dirac distribution satisfies the 
lattice gas Boltzmann equation; third, knowing this, we can quickly compute the lattice 
form of the Euler equations; fourth, we can see that many properties of the lattice-gas 
model are independent of the types of collisions involved and come only from the form 
of the Fermi-Dirac distribution. 

Collision operators for lattice gases with continuous speeds were derived by Broad- 
well, Harris, and other early workers on continuum lattice-gas systems. For totally 
discrete lattice gases with an exclusion principle, we must be careful to apply this prin- 
ciple correctly. It is similar to the case of quasi-particles in quantum Fermi liquids. 
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The construction reduces to following definitions of collision operators introduced in 
the section on classical kinetic theory and counting properly. 

Taking any hexagonal neighborhood, let i be one of the six directions and use ,. A . . 
the convention i ,  i + 1, i + 2,.  . . = I+, + + I ,  ip=;+2,. . . for convenience. (Later we 
will return to our original notation.) First consider binary collisions alone, and assume 
detailed balance, which implies microscopic reversibility of a collision at each vertex. 
One need not use detailed balance, but other balancing schemes are algebraically tedious 
and conceptually similar extensions of this basic case. Given a vertex at (r, t )  we 
compute the gain and loss of particles into a neighborhood along a fixed direction, say 
i.  This is, by definition, the collision kernel for binary processes. First compute the 
number of particles thrown in a collision into a phase-space region along the direction 
i. Let ni(r, t) be the probability that a particle is at the node (r, t) and has a velocity 
in the i th direction. 

If a particle scatters into a vector direction i ,  it must have come from binary 
processes along directions (i + 1 and i + 4) or (i + 2 and i + 5) (see the two-body 
scattering rules in Fig. 4). Interpreted as probabilities for the two events to happen, 
the probability for gain in the i direction due to binary processes alone is 

where = (1 - nk). The a ' s  impose the exclusion rule in the output channel, namely, 
that a particle cannot scatter there if one is already present. 

Loss of a particle from direction i can occur only by the binary collision (i + 3, i), 
and this can happen for each of the two choices of gain collisions separately. So 
we have (-2nini+3fii+lfii+2Ei+4fii+5) as the probability for loss in the i direction due 
to binary collisions alone. Note that these products can be compactly expressed as 
hifii+311:=0(1 - n;) where fii = e. 

The three-body gain-loss term can be written down by inspection in the same 
way as the binary term. The complete two- and three-body collision term for the ith 
direction, in compact notation, is 

For extensive calculations more compact notations are easily devised, but this one 
clearly brings out the essential idea in constructing arbitrary collision schema. With 
some minor modifications this form for the collision operator can be reinterpreted as a 
master equation for a transition process, which is useful as a starting point for a detailed 
microkinetic analysis by stochastic methods. 

Given the C( f )  for two- and three-body collisions in the above compact form, 
and given detailed balance, we show that C (  fg) = 0 for the Fermi-Dirac distribution. 
The proof is simple and well known from quantum Fermi-liquid theory where the same 
functional form for the collision operator appears but with a different interpretation. 

If n is a Fermi-Dirac distribution, it has the form (1 + eE)-I = n(E) where E is 
expanded in collision invariants, in this case particle number and momentum. Then 
note that & = fi = e E ,  the form of the Maxwell-Boltzmann distribution. This is 
also the form of the collision kernel, and the exponential terms just contain the sum 
of momenta in the collision. Since this sum is conserved, each collision term (binary, 
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triple, etc.) vanishes separately, because of the exclusion principle. So the solution is a 
Fermi-Dirac distribution. This proof also shows that as long as conservation laws of any 
kind are embodied in the collision term, each type of collision is separately zero under 
the Ferrni-Dirac distribution. Accordingly, the Fermi-Dirac solution is universal across 
collision types. This implies that one cannot alter the character of the Fermi-Dirac 
distribution in the lattice gas by adding collision types that respect collision invariants. 

Since fg is now assumed to be a Ferrni-Dirac distribution, we take it as 

with 

(Here we have returned to our original conventions for 6.) The equilibrium value for 
fj3 at v = 0, namely N J ~ = O ,  is where p is the density. Expanding the Fermi-Dirac form 
for fa about this equilibrium value gives us 

the same form as the Chapman-Enskog expansion (Eq. 15). To fix a and 0 we use 
number and momentum conservation as constraints, so that fg becomes 

where we have taken the particle speed as 1 (c = 1). The coefficient g(p) is 

If we substitute this result for fg in the momentum tensor (Eq. 13) and do the sum 
over 0, the particle directions, we have 

The lattice Euler equation (Eq. 12) thus becomes 

In the usual Euler equation g (p) = 1. Here g (p) is the lattice correction to the convective 
term due to the explicit lattice breaking of Galilean invariance. The equation of state 
for Eq. 17 is 
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For general single-speed models with panicle speed c and b velocity vectors in D 
dimensions, the result above generalizes to 

and 
D b - 2 p  

g(p) = --. D + 2  b - p  

These forms depend only on the structure of tensor products of ;'Ã in D dimensions. 
When we discuss the full Navier-Stokes equations, we will show how to absorb 

the g(p) Galilean-invariance-breaking term in Eq. 17 into a rescaling of variables. 

Isotropy and The Momentum Tensor. We will go on to discuss viscosity and 
the lattice form of the Navier-Stokes equation, but first we comment briefly on how 
the structure of the momentum tensor depends on the geometry of the lattice. Those 
interested in all the details can find them discussed from several viewpoints in Frisch, 
d1Humi?res, Hasslacher, Lallemand, and Pomeau 1987. 

By definition II;, = ,̂g(i/3);(i/3)jfi3, where fg  is determined by the Chapman- 
Enskog, or direct, expansion (Eq. 15). Isotropy implies invariance under rotations 
and reflections; tensors that are isotropic are proportional to a scalar. Define the 
tensors E(")  = xo(?o)i,  . . . (;'o);,, . For E(" )  with regular b-sided polygons, we can derive 
conditions on b for E(") to be isotropic. These conditions are 

For b = 4, the case of the HPP (Hardy, de Pazzis, and Pomeau) square lattice, E^  
is not isotropic. For b = 6, the hexagonal neighborhood case, all tensors up to n = 5 
are isotropic. 

Using the Chapman-Enskog expansion for fa and the notation above for tensors, 
IIv has the following tensor structure. 

where we are following the discussion of Wolfram. The momentum stress tensor must 
be isotropic up to E ( ~ )  in order that the leading terms in the momentum equation 
Â¥(correspondin to the convective and viscous terms in the Navier-Stokes equation) be 
isotropic. For the square model, the original discrete-lattice model, we have nonisotropy 
manifested in two places through the momentum flux tensor. 

where 

See Frisch et al. for further discussion. 
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The nonisotropy implies that we do not get a Navier-Stokes type equation for the 
square lattice. For the hexagonal model, (3= 6, isotropy is maintained through order 
E^. By using general considerations on tensor structures for polygons and polyhedra 
in D-dimensional space, one can quickly arrive at probable models for Navier-Stokes 
dynamics in any dimension. The starting point is that isotropy, or the lack of it, in both 
convective and viscous terms (the Euler and the Navier-Stokes equations), is controlled 
completely by the geometry of the underlying lattice. This crucial point was missed by 
all earlier workers on lattice models who thought that the geometry of the underlying 
lattice was irrelevant. 

Viscosity for Lattice Gas Models. In "The Continuum Argument" we saw that the 
general form of the compressible Navier-Stokes equation with bulk viscosity C, = 0 is 

where v is the kniematic shear viscosity. To derive this form for the discrete model, 
one must solve for II;, using both the Chapman-Enskog approximation for f p  and 
the momentum-conservation equation. We noted earlier that the momentum equation 
contained corrections as powers of the lattice spacing but chose to ignore these at first 
pass. However, if we use the full Taylor expansion developed in the lattice-size scaling, 
we find that the contribution to the viscous term of the momentum equation is -ipX^v. 
Note that the correction to the viscosity is a constant (see Eq. 19) that depends only 
on the lattice and dimension and is independent of the scattering-rule set. This extra 
noncovariant-derivative contribution to the viscosity must be subtracted from the bare 
viscosity calculated from the normal perturbation expansion to get the renormalized 
viscosity, which is the one actually measured in the lattice gas. In other words, the 
bare coupling constant of the lattice gas model gets "dressed" by this constant amount, 
owing to the discrete vacuum that the particle must pass through, to become the physical 
lattice-gas viscosity. 

Viscosity is a coupling constant and can be found by any method that can isolate 
the Q\ term in the Chapman-Enskog expansion. The simplest methods involve solving 
for the eigenvalues and right eigenvectors of the linearized collision operator, which 
is a tedious exercise in linear algebra. Using the results of such a calculation, we can 
write the Navier-Stokes form of the momentum equation in which the viscosity v(p) 
appears explicitly: 

at (pvi ) + 9, nij = 9, sij , 

where the momentum tensor II;; and the viscosity stress tensor are 

and 
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The coefficient c: is given by 

and cs can be identified as the speed of sound. For the simple hexagonal model 
c = I /&,  and the viscosity is given by 

where d = 9, that is, the mass density per cell. (The - in the viscosity was mentioned 
above as the noncovariant correction due to the finite lattice size.) 

The Incompressible Limit. Many features of low Mach number (M = v/c, <? 
1) flows in an ordinary gas can be described by the incompressible Navier-Stokes 
equations: 

atv + v  . vv = -vp + U V ~ V  (20) 

and 

We end this theoretical analysis by showing under what conditions we recover these 
equations for lattice gases. One way is to freeze the density everywhere except in the 
pressure term of the momentum equation (Eq. 18). Then, in the low-velocity limit, we 
can write the lattice Navier-Stokes equations as 

and 

where p = po + p' and we allow density fluctuations in the pressure term only. As it 
stands, Eq. 21 is not Galilean invariant. To make it so, we must scale away the g(po) 
term in a consistent way. We rescale time and viscosity as follows: 

t 
t ~r - and 

g (PO) 

To be more precise, we do an e expansion of the momentum equation, where e is 
the same order as the global lattice size Lg (see Frisch et al. for details), and rescale 
the variables as follows: 

and 

where e-I is on the order of the global lattice size Lg .  (Note that this rescaling 
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SIMULATED VELOCITY PROFILE 

Fig. 7. The predicted velocity profile was ob- 
tained in a low-velocity lattice gas simulation 
of two- dimensional flow in a channel with vis- 
cous boundaries (Kadanoff, McNamara, and 
Zanetti 1987). 

0 10 20 30 
Lattice Row along Channel Width 

of variables keeps the Reynolds number fixed.) Now all the relevant terms in the 
momentum equation are of 0(e3) and higher order terms are 0(e4) or smaller. So to 
leading order (where VI  means &) we get 

Thus we recover the incompressible Navier-Stokes equations. To obtain this result, 
we have done a fixed-Reynolds-number, large-scale, low-Mach-number expansion and 
Galilean invariance has been restored, at least formally, by a time resealing. 

Simulations of Fluid Dynamics 
with the Hexagonal Lattice Gas Automaton 

In the last two years several groups in the United States and France have done 
simulations of fluid-dynamical phenomena using the hexagonal lattice-gas automaton. 
The purpose of these simulations was twofold: first, to check the internal consistency of 
the automaton, and second, to determine, by both qualitative and quantitative measures, 
whether the model behaves the same or nearly the same as the known analytic and 
numerical solutions of the Navier-Stokes equations. 

The classes of experiments done can be grouped roughly as free flows, flow 
instabilities, flows past objects, and flows in channels or pipes. These simulations 
were run in a range of Reynolds numbers between 100 and 700 (and for relatively low 
mean flow velocities, so that the fluid is nearly incompressible). We first checked to 
see whether the automaton developed various classic instabilities when triggered by 
two types of mechanisms, external perturbations and internal noise. The two classic 
instabilities studied were the Kelvin-Helmholtz instability of two opposing shear flows 
and the Rayleigh-Taylor instability. We describe the Kelvin-Helmholtz instability in 
some detail. 

In the Kelvin-Helmholtz instability one is looking for the development of a final- 
state vortex structure of appropriate vortex polarity. From an initial state of two op- 
posing flows undergoing shear, the detailed development of the instability depends on 
the initial perturbation of the flows. Left unperturbed, except by internal noise in the 
automaton, at first the two opposing flows develop velocity fields that signal the devel- 
opment of a boundary layer, then sets of vortices develop in these boundary layers, and 
finally vortex interactions occur that trigger a large-scale instability and the develop- 
ment of large-vortex final states. The same pattern appears in standard two-dimensional 
numerical simulations of the Navier-Stokes equations near the incompressible regime. 
No pathological non-Navier-Stokes behavior was observed. These results extend over 
the entire range of Reynolds numbers (100-700) run with the simple hexagonal model. 
It is notable that the Kelvin-Helmholtz instability is self-starting due to the automaton 
internal noise, and the instability proceeds rapidly. 

The Rayleigh-Taylor instability was simulated by a French group in a slightly 
compressible fluid range, where it behaves like a Navier-Stokes fluid with no anomalies. 

These global topological tests check whether automaton dynamics captures the 
correct overall structure of fluids. In general, whenever the automaton is run in the 
Navier-Stokes range, it produces the expected global topological behavior and correct 
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SIMULATED AND THEORETICAL KINEMATIC VISCOSITIES 
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Fig. 8. Theoretical shear (solid line) and bulk (dashed line) reduced viscosities as a function of 
reduced density compared with the results of hexagonal lattice gas simulation with rest particles 
and all possible collisions (dlHurnieres and Lallemand 1987). 

functional forms for various fluid dynamical laws. The question of quantitative accuracy 
of various known constants is harder to answer, and we will take it up in detail later. 

The next broad class of flows studied are flows past objects. Here, we look for 
distinctive qualitative behavior characteristic of a fluid or gas obeying Navier-Stokes 
dynamics. The geometries studied, through a wide range of Reynolds numbers, were 
flows past flat plates placed normal to the flow, flows past plates inclined at various 
angles to the flow, and flows past cylinders, 60-degree wedges, and typical airfoils. The 
expected scenario changes as a function of increasing Reynolds number: recirculating 
flow behind obstacles should develop into vortices, growing couples of vortices should 
eventually break off to form von Karman streets with periodic oscillation of the von 
Karman tails; finally, and as the Reynolds number increases, the periodic oscillations 
should become aperiodic, and the complex phenomena characteristic of turbulent flow 
should appear. The lattice gas exhibits all these phenomena with no non-Navier-Stokes 
anomalies in the range of lattice-gas parameters that characterize near incompressibility. 

The next topic is quantitative self-consistency. We used the Boltzmann transport 
approximation for the discrete model to calculate viscosities for the simple hexagonal 
automaton as well as models with additional scattering rules and rest particles. We then 
checked these analytic predictions against the viscosities deduced from two kinds of 
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simulations. We ran plane-parallel Poiseuille flow in a channel, saw that it developed the 
expected parabolic velocity profile (Fig. 7) and then deduced the viscosity characteristic 
of this type of flow. We also ran an initially flat velocity distribution and deduced a 
viscosity from the observed velocity decay. These two simulations agree with each other 
to within a few percent and agree with the analytic predictions from the Boltzmann 
transport calculation to within 10 percent. Viscosity was also measured by observing the 
decay of sound waves of various frequencies (Fig. 8). The level of agreement between 
simulation and the computed Boltzmann viscosity is generic: we see a systematic error 
of approximately 10 percent. Monte Carlo calculations of viscosities computed from 
microscopic correlation functions improve agreement with simulations to at least 3 
percent and indicate that the Boltzmann description is not as accurate an analytic tool 
for the automaton as are microscopic correlation techniques. One would call this type of 
viscosity disagreement a Boltzmann-induced error. Other consistency checks between 
the automaton simulation and analytic predictions display the same level of agreement. 

Detailed quantitative comparisons between conventional discretizations of the 
Navier-Stokes equations and lattice-gas simulations have yet to be done for several 
reasons. The simple lattice-gas automaton has a Fermi-Dirac distribution rather than 
the standard Maxwell-Boltzmann distribution. This difference alone causes deviations 
of 0(v2) in the macrovelocity from standard results. For the same reason and unlike 
standard numerical spectral codes for fluid dynamics, the simple lattice-gas automa- 
ton has a velocity-dependent equation of state. A meaningful comparison between the 
two approaches requires adjusting the usual spectral codes to compute with a velocity- 
dependent equation of state. This rather considerable task has yet to be done. So far our 
simulations can be compared only to traditional two-dimensional computer simulations 
and analytic results derived from simple equations of state." 

Some simple quantities such as the speed of sound and velocity profiles have been 
measured in the automaton model. The speed of sound agrees with predicted values and 
functional forms for channel velocity profiles and D7Arcy's law agree with calculations 
by standard methods. The automaton reaches local equilibrium in a few time steps and 
reaches global equilibrium at the maximum information-transmission speed, namely, at 
the speed of sound. 

Simulations with the two-dimensional lattice-gas model hang together rather well 
as a simulator of Navier-Stokes dynamics. The method is accurate enough to test 
theoretical turbulent mechanisms at high Reynolds number and as a simulation tool for 
complex geometries, provided that velocity-dependent effects due to the Fermi nature 
of the automaton are correctly included. Automaton models can be designed to fit 
specific phenomena, and work along these lines is in progress. 

Three-dimensional hydrodynamics is being simulated, both on serial and parallel 
machines, and early results show that we can easily simulate flows with Reynolds 
numbers of a few thousand. How accurately this model reproduces known instabilities 
and flows remains to be seen, but there is every reason to believe agreement will be 
good since the ingredients to evolve to Navier-Stokes dynamics are all present. We end 
Part I1 of this article with a graphical display of two- and three-dimensional simulations 
in "Calculations Using Lattice-Gas Techniques." My Los Alamos collaborators and I 
have accompanied this display with a summary of the known advantages and present 
limitations of lattice gas methods. (Part 111 begins on page 211.) 
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0 
ver the last few years the tantaliz- 
ing prospect of being able to per- 
form hydrodynamic calculations 

orders-of-magnitude faster than present 
methods allow has prompted considerable 
interest in lattice gas techniques. A few 
dozen published papers have presented 
both advantages and disadvantages, and 
several groups have studied the possibil- 
ities of building computers specially de- 
signed for lattice gas calculations. Yet the 
hydrodynamics community remains gen- 
erally skeptical toward this new approach. 
The question is often asked, "What cal- 
culations can be done with lattice gas 
techniques?" Enthusiasts respond that in 
principle the techniques are applicable to 
any calculation, adding cautiously that in- 
creased accuracy requires increased com- 
putational effort. Indeed, by adding more 
particle directions, more particles per site, 
more particle speeds, and more variety 
in the interparticle scattering rules, lattice 
gas methods can be tailored to achieve 
better and better accuracy. So the real 
problem is one of tradeoff: How much 
accuracy is gained by making lattice gas 
methods more complex, and what is the 
computational price of those complica- 
tions? That problem has not yet been well 
studied. This paper and most of the re- 
search to date focus on the simplest lattice 
gas models in the hope that knowledge of 
them will give some insight into the es- 
sential issues. 

We begin by examining a few of the 
features of the simple models. We then 
display results of some calculations. Fi- 
nally, we conclude with a discussion of 
limitations of the simple models. 

Features of Simple 
Lattice Gas Methods 

We will discuss in some depth the 
memory efficiency and the parallelism of 
lattice gas methods, but first we will touch 
on their simplicity, stability, and ability to 

model complicated boundaries. 
Computer codes for lattice gas meth- 

ods are enormously simpler than those 
for other methods. Usually the essential 
parts of the code are contained in only a 
few dozen lines of FORTRAN. And those 
few lines of code are much less com- 
plicated than the several hundred lines 
of code normally required for two- and 
three-dimensional hydrodynamic calcula- 
tions. 

There are many hydrodynamic prob- 
lems that cause most standard codes (such 
as finite-difference codes, spectral codes, 
and particle-in-cell codes) to crash. That 
is, the code simply stops running because 
the algorithm becomes unstable. Stability 
is not a problem with the codes for lattice 
gas methods. In addition, such methods 
conserve energy and momentum exactly, 
with no roundoff errors. 

Boundary conditions are quite easy to 
implement for lattice gas methods, and 
they do not require much computer time. 
One simply chooses the cells to which 
boundary conditions apply and updates 
those cells in a slightly different way. 
One of three boundary conditions is com- 
monly chosen: bounce-back, in which 
the directions of the reflected particles 
are simply reversed; specular, in which 
mirror-like reflection is simulated; or dif- 
fusive, in which the directions of the re- 
flected particles are chosen randomly. 

We consider next the memory effi- 
ciency of the lattice gas method. When 
the two-dimensional hydrodynamic lat- 
tice gas algorithm is programmed on a 
computer with a word length of, say, 
64 bits (such as the Cray X-MP), two 
impressive efficiencies occur. The first 
arises because every single bit of mem- 
ory is used equally effectively. Coined 
"bit democracy" by von Neumann, such 
efficient use of memory should be con- 
trasted with that attainable in standard 
calculations, where each number requires 
a whole 64-bit word. The lattice gas 
is "bit democratic" because all that one 

needs to know is whether or not a particle 
with a given velocity direction exists in a 
given cell. Since the number of possible 
velocity directions is six and no two par- 
ticles in the same cell can have the same 
direction, only six bits of information are 
needed to completely specify the state of 
a cell. Each of those six bits corresponds 
to one of the six directions and is set to 
1 if the cell contains a particle with that 
direction and to 0 otherwise. Suppose we 
designate the six directions by A,B,C,D, 
E,F as shown on the next page. We as- 
sociate each bit in the 64-bit word A with 
a different cell, say the first 64 cells in the 
first row. If the first cell contains (does 
not contain) a particle with direction A, 
we set the first bit in A to 1 (0). Similarly, 
we pack information about particles in the 
remaining 63 cells with direction A into 
the remaining 63 bits of A. The same 
scheme is used for the other five direc- 
tions. Consequently, all the information 
for the first 64 cells in the first row is 
contained in the six words A, B ,  C ,  D ,  
E ,  and F. Note that all bits are equally 
important and all are fully utilized. 

To appreciate the significance of such 
efficient use of memory, consider how 
many cells can be specified in the solid- 
state storage device presently used with 
the Cray X-MPJ416 at Los Alamos. That 
device stores 5 12,000,000 64-bit words. 
Since the necessary information for 10: 
cells can be stored in each word, the 
device can store information for about 
5,000,000,000 cells, which corresponds 
to a two-dimensional lattice with 100,000 
cells along one axis and 50,000 cells 
along the other. That number of cells is 
a few orders of magnitude greater than 
the number normally treated when other 
methods are used. (Although such high 
resolution may appear to be a significant 
advantage of the lattice gas method, some 
averaging over cells is required to ob- 
tain smooth results for physical quantities 
such as velocity and density.) 

The second efficiency is related to the 
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Ltaritattom of Simple 
Lattice Gas Model 

As we discussed earlier, lattice gas 
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Flow Past a Plate 
Fig. l a .  Flow past a plate with periodic boundary 

conditions. This simulation, which was done in 

September 1985, shows vortices forming behind the 

plate. The average flow velocity has a magnitude of 

0.2 lattice sites per time step and is perpendicular to 

the plate, pointing to the lower right. The direction 

of the flow velocity is color-coded. 

Fig. 1b. The same simulation as that described in  

Fig. l a  but with no three-body scattering rule. As a 

result, spurious laws of conservation of momentum 

along the lines of the grid prevent the development 

of hydrodynamics. 



Kelvin-Helmholtz Instability - d 
Fig. 2. A Kelvin-Helmholtz instability develops into vortices from initially opposing flows past 

a sinusoidal interface that is removed at 1 = 0. Periodic boundary conditions apply. For 
this simulation about 10,000,000 particles and 14,000,000 cells were used. 
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Flow Past 
a Wedge 



Fig. 3. A wake grows behind a wedge. The flow is 

from left to right with periodic boundary conditions. 

tides and 16 million cells were used. 

1 
The flow is initialized as uniform flow to the right. The 

wedge is inserted at t = 0. Then vortices grow and are 

carried downstream. For this simulation 20 million par- 

Flow Past 
a Cylinder 
Fig. 4. Low-velocity flow (from top to bot- 

tom) past a cylinder creates a periodically 

oscillating wake. Four snapshots from one 

period of the oscillation are shown. In this 

simulation, which has periodic right and 

left boundaries, 1.4 million particles flowed 

through 1 million cells. The flow was ini- 

tially uniform. 

Turbulent 
Wake 
Fig. 5. A turbulent wake grows behind an 

ellipse being dragged through a fluid con- 

sisting of 11 million particles and 8 million 

cells. The ellipse is composed of about 

2400 cells in which the velocity directions 

of the entering particles are reversed. The 

flow has periodic right and left boundaries. 

(An infinite sequence of equivalent ellipses 

exists to the left and right of the frame 

shown.) The Reynolds number in the flow 

is 1021. 
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1 tice Gas Techniques" we displayed 
the results of generalizing the sim- 

ple hexagonal model to three dimensions. 
Here, in the last part of the article, we 
will discuss numerous ways to extend and 
adapt the simple model. In particular, we 
emphasize its role as a paradigm for par- 
allel computing. 

Adjusting the Model To Fit 
the Phenomenon 

There are several reasons for altering 
the geometry and rule set of the funda- 
mental hexagonal model. To understand 
the mathematical physics of lattice gases, 
we need to know the class of functionally 
equivalent models, namely those models 
with different geometries and rules that 
produce the same dynamics in the same 
parameter range. 

To explore turbulent mechanisms in 
fluids, the Reynolds number must be sig- 
nificantly higher than for smooth flow, 
so models must be developed that in- 
crease the Reynolds number in some way. 
The most straightforward method, other 
than increasing the size of the simula- 
tion universe, is to lower the effective 
mean free path in the gas. This lowers 
the viscosity and the Reynolds number 
rises in inverse proportion. Increasing 
the Reynolds number is also important 
for practical applications. In "Reynolds 
Number and Lattice Gas Calculations" 

work needed to simulate high-Reynolds- 
number flows with cellular automata. 

To apply lattice gas methods to sys- 
tems such as plasmas, we need to develop 
models that can support widely separated 
time scales appropriate to, for example, 
both photon and hydrodynamical modes. 
The original hexagonal model on a single 
lattice cannot do so in any natural way 
but must be modified to include several 
lattices or the equivalent (see below). 

Within the class of fluids, problems in- 
volving gravity on the gas, multi-compo- 
nent fluids, gases of varying density, and 
gases that undergo generalized chemical 
reactions require variations of the hexago- 
nal model. Once into the subject of appli- 
cations rather than fundamental statistical 
mechanics, there is an endless industry 
in devising clever gases that can simulate 
the dynamics of a problem effectively. 

We outline some of the possible ex- 
tensions to the hexagonal gas, but do so 
only to give an overview of this develop- 
ing field. Nothing fundamental changes 
by making the gas more complex. This 
model is very much like a language. We 
can build compound sentences and para- 
graphs out of simple sentences, but it 
does not change the fundamental rules by 
which the language works. 

The obvious alterations to the hexago- 
nal model are listed below. They com- 
prise almost a complete list of what can 
be done in two dimensions, since a lattice 
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gas model contains only a few adjustable 
structural elements. 

Indistinguishable particles can be col- 
ored to create distinguishable species in 
the gas, and the collision rules can be 
appropriately modified. Rules can be 
weighted to different outcomes; for ex- 
ample, one can create a chiral gas (left- 
or right-handed) by biasing collisions 
to make them asymmetric. In three di- 
mensions there is an instability at any 
Reynolds number caused by lack of mi- 
croscopic parity, so the chiral gas is an 
important model for simulating this in- 
stability. 

At the next order of complexity, multi- 
speed particles can be introduced, either 
alone or with changes in geometry. The 
simplest example is a square neighbor- 
hood in two dimensions in which the col- 
lision domain is enlarged to include next- 
to-nearest neighbors, and a diagonal parti- 
cle with speed -\/2 is introduced to force 
an isotropic lattice gas. In general, any 
lattice model with only two-body colli- 
sions and a single speed will contain spu- 
rious conservation laws. But if multiple 
speeds are allowed, models with binary 
collisions can maintain isotropy. In other 
words, models with multiple speeds are 
equivalent to single-speed models with a 
higher order rotation group and extended 
collision sets. Many variations are possi- 
ble and each can be designed to a problem 
where it has a special advantage. 

Finally, colored multiple-speed mod- 
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els are in general equivalent to single- 
species models operating on separate lat- 
tices. Colored collision rules couple the 
lattices so that information can be trans- 
ferred between them at different time 
scales. Certain statistical-mechanical phe- 
nomena such as phase transitions can be 
done this way. 

By altering the rule domain and adding 
gas species with distinct speeds, it is pos- 
sible to add independent energy conserva- 
tion. This allows one to tune gas models 
to different equations of state. Again, we 
gain no fundamental insight into the de- 
velopment of large collective models by 
doing so, but it is useful for applications. 

In using these lattice gas variations to 
construct models of complex phenomena, 
we can proceed in two directions. The 
first direction is to study whether or not 
complex systems with several types of 
coupled dynamics are described by skele- 
tal gases. Can complex chemical reac- 
tions in fluids and gases, for example, 
be simulated by adding collision rules 
operating on colored multi-speed lattice 
gases? Complex chemistry is set up in the 
gas in outline form, as a gross scheme of 
closed sets of interaction rules. The same 
idea might be used for plasmas. From a 
theoretical viewpoint one wants to study 
how much of the known dynamics of such 
systems is reproduced by a skeletal gas; 
consequently both qualitative and quanti- 
tative results are important. 

Exploring Fundamental Questions. 
Models of complex gas or fluid systems, 
like other lattice gas descriptions, may ei- 
ther be a minimalist description of mi- 
crophysics or simply have no relation to 
microphysics other than a mechanism for 
carrying known conservation laws and re- 
actions. We can always consider such gas 
models to be pure computers, where we 
fit the wiring, or architecture, to the prob- 
lem, in the same fashion that ordinary dis- 
cretization schemes have no relation to 
the microphysics of the problem. How- 
ever for lattice gas models, or cellular- 

continued on page 214 

NUMBER 
and 

Lattice Gas 
Calculations 

T he only model-dependent coupling 
constant in the Navier-Stokes equa- 
tion is the viscosity. Its main role 

in lattice gas computations is its influence 
on the Reynolds number, an important 
scaling concept for flows. Given a system 
with a fixed intrinsic global length scale, 
such as the size of a pipe or box, and 
given a flow, then the Reynolds number 
can be thought of as the ratio of a typical 
macrodynamic time scale to a time scale 
set by elementary molecular processes in 
the kinetic model. 

Reynolds numbers characterize the be- 
havior of flows in general, irrespective 
of whether the system is a fluid or a 
gas. At high enough Reynolds num- 
bers turbulence begins, and turbulence 
quickly loses all memory of molecular 
structure, becoming universal across liq- 

uids and gases. For this reason and 
because many interesting physical and 
mathematical phenomena happen in tur- 
bulent regimes, it is important to be able 
to reach these Reynolds numbers in real- 
istic simulations without incurring a large 
amount of computational work or storage. 

Some simple arguments based on di- 
mensional analysis and phenomenolog- 
ical theories of turbulence indicate, at 
first glance, that any cellular automaton 
model has a high cost in computer re- 
sources when simulating high-Reynolds- 
number flows. These arguments appeared 
in the first paper on the subject (Frisch, 
Hasslacher, and Pomeau 1987) and were 
later elaborated on by other authors. We 
will go through the derivation of some 
of the more severe constraints on simu- 
lating high-Reynolds-number flows with 
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continued from page 212 

automaton models in general, there al- 
ways seems to be a deep relation between 
the abstract computer embodying the gas 
algorithm for a physical problem and the 
mathematical physics of the system itself. 

This duality property is an important 
one, and it is not well understood. One 
of the main aims of lattice gas theory is 
to make the underlying mathematics of 
dynamical evolution clearer by providing 
a new perspective on it. One would, for 
example, like to know the class of all lat- 
tice gas systems that evolve to a dynam- 
ics that is, in an appropriate sense, nearby 
the dynamics actually evolved by nature. 
Doing this will allow us to isolate what 
is common to such systems and identify 
universal mathematical mechanisms. 

Engineering Design Applications. The 
second direction of study is highly ap- 
plied. In most engineering-design sit- 
uations with complicated systems, one 
would like to know first the general qual- 
itative dynamical behavior taking place 
in some rather involved geometry and 
then some rough numerics. Given both, 
one can plot out the zoo of dynamical 
development within a design problem. 
Usually, one does not know what kinds 
of phenomena can occur as a parameter 
in the system varies. Analytic methods 
are either unavailable, hard to compute 
by traditional methods, or simply break 
down. Estimating phenomena by scal- 
ing or arguments depending on order-of- 
magnitude dimensional analysis is often 
inaccurate or yields insufficient informa- 
tion. As a result, a large amount of ex- 
pensive and scarce supercomputer time is 
used just to scan the parameter space of 
a system. 

Lattice gas models can perform such 
tasks efficiently, since they simulate at 
the same speed whether the geometry and 
system are simple or complex. Compli- 
cated geometries and boundary conditions 
for massively parallel lattice gas simula- 
tors involve only altering collision rules 
in a region. This is easily coded and 

can be done interactively with a little in- 
vestment in expert systems. There is no 
question that for complex design prob- 
lems, lattice gas methods can be made 
into powerful design tools. 

Beyond Two Dimensions 

In two dimensions there exists a single- 
speed skeletal model for fluid dynamics 
with a regular lattice geometry. It re- 
lies on the existence of a complete tiling 
of the plane by a domain of sufficiently 
high symmetry to guarantee the isotropy 
of macroscopic modes in the model. In 
three dimensions this is not the case, for 
the minimum appropriate domain symme- 
try is icosahedral and such polyhedra do 
not tile three-space. If we are willing 
to introduce multiple-speed models, there 
may exist a model with high enough ro- 
tational symmetry, as in the square model 
with nearest and next-to-nearest neighbor 
interaction in two dimensions, but it is not 
easy to find and may not be efficient for 
simulations. 

A tactic for developing an enlarged- 
neighborhood, three-dimensional model, 
which still admits a regular lattice, is to 
notice that the number of regular polyhe- 
dra as a function of dimension has a max- 
imum in four dimensions. Examination 
of the face-centered four-dimensional hy- 
percube shows that a single-speed model 
connected to each of twenty-four near- 
est neighbors has exactly the right in- 
variance group to guarantee isotropy in 
four dimensions. So four-dimensional 
single-speed models exist on a regular 
tiling. Three-dimensional, or regular, hy- 
drodynamics can be recovered by taking a 
thin one-site slice of the four-dimensional 
case, where the edges of the slice are 
identified. Projecting such a scheme into 
three-dimensional space generates a two- 
speed model with nearest and next-to- 
nearest neighbor interactions of the sort 
guaranteed to produce three-dimensional 
Navier-Stokes dynamics. 

Such models are straightforward ex- 

tensions of all the ideas present in the 
two-dimensional case and are being sim- 
ulated presently on large Cray-class ma- 
chines and the Connection Machine 2. 
Preliminary results show good agreement 
with standard computations at least for 
low Reynolds numbers. In particular, 
simulation of Taylor-Green vortices at 
a Reynolds number of about 100 on a 
(128) universe (a three-dimensional cube 
with 128 cells in each direction) agrees 
with spectral methods to within 1 per- 
cent, the error being limited by Monte 
Carlo noise. The ultimate comparison is 
against laboratory fluid-flow experiments. 
As displayed at the end of Part 11, three- 
dimensional flows around flat plates have 
also been done. 

A more intriguing strategy is to give 
up the idea of a regular lattice. Phys- 
ical systems are much more like a lat- 
tice with nodes laid down at random. At 
present, we don't know how to analyze 
such lattices, but an approximation can be 
given that is intermediate between regu- 
lar and random grids. Quasi-tilings are 
sets of objects that completely tile space 
but the grids they generate are not peri- 
odic. Locally, various types of rotation 
symmetry can be designed into such lat- 
tices, and in three dimensions there ex- 
ists such a quasi-tiling that has icosahe- 
dral symmetry everywhere. The beauty 
of quasi-tilings is that they can all be 
obtained by simple slices through hyper- 
cubes in the appropriate dimension. For 
three dimensions the parent hypercube is 
six-dimensional. 

The idea is to run an automaton model 
containing the conservation laws with as 
simple a rule set as possible on the six- 
dimensional cube and then take an appro- 
priately oriented three-dimensional slice 
out of the cube so arranged as to gen- 
erate the icosahedral quasi-tiling. Since 
we only examine averaged quantities, it is 
enough to do all the averaging in six di- 
mensions along the quasi-slice and image 
the results. By such a method we guar- 
antee exact isotropy everywhere in three 
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dimensions and avoid computing directly 
on the extremely complex lattices that the 
quasi-tiling generates. Ultimately, one 
would like to compute on truly random 
lattices, but for now there is no simple 
way of doing that efficiently. 

The simple four-dimensional model is 
a good example of the limits of present 
super-computer power. It is just barely 
tolerable to run a (1000)~ universe at a 
Reynolds number of order a few thousand 
on the largest existing Cray's. It is far 
more efficient to compute in large paral- 
lel arrays with rather inexpensive custom 
machines, either embedded in an existing 
parallel architecture or on one designed 
especially for this class of problems. 

Lattice Gases as Parallel 
Computers 

Let us review the essential features of a 
lattice gas. The first property is the totally 
discrete nature of the description: The 
gas is updated in discrete time steps, lat- 
tice gas elements can only lie on discrete 
space points arranged in a space-filling 
network or grid, velocities can also have 
only discrete values and these are usually 
aligned with the grid directions, and the 
state of each lattice gas site is described 
by a small number of discrete bits instead 
of continuous values. 

The second crucial property is the local 
deterministic rules for updating the array 
in space and time. The value of a site 
depends only on the values of a few lo- 
cal neighbors so there is no need for in- 
formation to propagate across the lattice 
universe in a single step. Therefore, there 
is no requirement for a hardwired inter- 
connection of distant sites on the grid. 

The third element is the Boolean nature 
of the updating rules. The evolution of 
a lattice gas can be done by a series of 
purely Boolean operations, without ever 
computing with radix arithmetic. 

To a computer architect, we have just 
described the properties of an ideal con- 
current, or parallel, computer. The iden- 

tical nature of particles and the locality 
of the rules for updating make it natural 
to update all sites in one operation-this 
is what one means by concurrent or par- 
allel computation. Digital circuitry can 
perform Boolean operations naturally and 
quickly. Advancing the array in time is a 
sequence of purely local Boolean opera- 
tions on a deterministic algorithm. 

Most current parallel computer designs 
were built with non-local operations in 
mind. For this reason the basic architec- 
ture of present parallel machines is over- 
laid with a switching network that en- 
ables all sites to communicate in various 
degrees with all other sites. (The usual 
model of a switching network is a tele- 
phone exchange.) The complexity of ma- 
chine architecture grows rapidly with the 
number of sites, usually as n log n at best 
with some time tradeoff and as 0 ( n 2 )  at 
worst. In a large machine, the complex- 
ity of the switching network quickly be- 
comes greater than the complexity of the 
computing configuration. 

In a purely local architecture switch- 
ing networks are unnecessary, so two- 
dimensional systems can be built in a 
two-dimensional, or planar configuration, 
which is the configuration of existing 
large-scale integrated circuits. Such an 
architecture can be made physically com- 
pact by arranging the circuit boards in an 
accordion configuration similar to a piece 
of folded paper. Since the type of geome- 
try chosen is vital to the collective behav- 
ior of the lattice gas model and no unique 
geometry fits all of parameter space, it 
would be a design mistake to hardwire a 
particular model into a machine architec- 
ture. Machines with programmable ge- 
ometries could be designed in which the 
switching overhead to change geometries 
and rules would be minimal and the gain 
in flexibility large (Fig. 9). 

In more than two dimensions a purely 
two-dimensional geometry is still effi- 
cient, using a combination of massive 
parallel updating in a two-dimensional 
plane and pipelining for the extra dimen- 

sions. As technology improves, it is easy 
to imagine fully three-dimensional ma- 
chines, perhaps with optical pathways be- 
tween planes, that have a long mean time 
to failure. 

The basic hardware unit in conven- 
tional computers is the memory chip, 
since it has a large storage capacity (256 
K bytes or 1 M bytes presently) and is 
inexpensive, reliable, and available com- 
mercially in large quantities. In fact, 
most modem computers have a memory- 
bound architecture, with a small number 
of controlling processors either doing lo- 
cal arithmetic and logical operations or 
using fast hashing algorithms on large 
look-up tables. An alternative is the lo- 
cal architecture described above for lat- 
tice gas simulators. In computer archi- 
tecture terms it becomes very attractive 
to build compact, cheap, very fast simu- 
lators which are general over a large class 
of problems such as fluids. Such ma- 
chines have a potential processing capac- 
ity much larger than the general-purpose 
architectures of present or foreseen vec- 
torial and pipelined supercomputers. A 
number of such machines are in the pro- 
cess of being designed and built, and it 
will be quite interesting to see how these 
experiments in non-von Neumann archi- 
tectures (more appropriately called super- 
von Neumann) turn out. 

At present, the most interesting ma- 
chine existing for lattice gas work is the 
Connection Machine with around 65,000 
elementary processors and several giga- 
bytes of main memory. This machine 
has a far more complex architecture than 
needed for pure lattice-gas work, but it 
was designed for quite a different pur- 
pose. Despite this, some excellent simu- 
lations have been done on it. The simu- 
lations at Los Alamos were done mainly 
on Crays with SUN workstations serv- 
ing as code generators, controllers, and 
graphical units. The next generation of 
machines will see specialized lattice gas 
machines whether parallel, pipelined, or 
some combination, running either against 
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ARCHITECTURE OF THE 
LATTICE GAS SIMULATOR 

Fig. 9. The lattice gas code is a virtual machine 
in the sense that the way the code works is 
exactly the way to build a machine. 

(a) The basic processor unit in a lattice gas 
simular has five units: (1) a memory unit that 
stores the state at each node of the lattice grid; 
(2) a propagation unit that advances particles 
from one node to the next; (3) a scattering unit 
that checks the state at each node and imple- 
ments the scattering rules where appropriate; 
(4) an averaging unit that averages velocities 
over a preassigned region of the lattice uni- 
verse; and (5) an output and display unit. 

(b) Processors are arranged in a parallel ar- 
ray. Each processor operates independently 
except at nodes on shared boundaries of the 
lattice gas universe. 

(c) Processor units are overlaid by units that 
can alter the geometry of the lattice, the col- 
lision rules and boundary conditions, and the 
type of averaging. 

Connection Machine style architectures 
or using them as analyzing engines for 
processing data generated in lattice gas 
"black boxes." This will be a leam- 
ing experience for everyone involved in 
massive simulation and provide hardware 
engines that will have many interesting 
physics and engineering applications. 

Unfortunately, fast hardware alone is 
not enough to provide a truly useful ex- 
ploration and design tool. A large amount 
of data is produced in a typical many de- 
gree of freedom system simulation. In 
three dimensions the problems of access- 
ing, processing, storing, and visualizing 
such quantities of data are unsolved and 
are really universal problems even for 
standard supercomputer technology. As 
the systems we study become more com- 

Scattering Unit + 
(a) Processor Unit 

(b) Parallel Array of Processors 

m 
Lattice Geometry (~oundar~  conditions) 

and Scattering Rules 
Selector 

(c) Control Unit Modifying Processors 

plex, all these problems will also. It will 
take innovative engineering and physics 
approaches to overcome them. 

Conclusion 

To any system naturally thought of 
as classes of simple elements interacting 
through local rules there should corre- 
spond a lattice-gas universe that can sim- 
ulate it. From such skeletal gas models, 
one can gain a new perspective on the 
underlying mathematical physics of phe- 
nomena. So far we have used only the 
example of fluids and related systems that 
naturally support flows. The analysis of 
these systems used the principle of max- 
imum ignorance: Even though we know 
the system is deterministic, we disregard 

that information and introduce artificial 
probabilistic methods. The reason is that 
the analytic tools for treating problems 
in this way are well developed, and al- 
though tedious to apply, they require no 
new mathematical or physical insight. 

A deep problem in mathematical phys- 
ics now comes up. The traditional meth- 
ods of analyzing large probabilistic sys- 
tems are asymptotic perturbation expan- 
sions in various disguises. These contain 
no information on how fast large-scale 
collective behavior should occur. We 
know from computer simulations that lo- 
cal equilibrium in lattice gases takes only 
a few time steps, global equilibrium oc- 
curs as fast as sound propagation will al- 
low, and fully developed hydrodynamic 
phenomena, including complex instabil- 
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ities, happen again as fast as a traverse 
of the geometry by a sound wave. One 
might say that the gas is precociously 
asymptotic and that this is basically due 
to the deterministic property that conveys 
information at the greatest possible speed. 

Methods of analyzing the transient and 
invariant states of such complex multi- 
dimensional cellular spaces, using de- 
terminism as a central ingredient, are 
just beginning to be explored. They are 
non-perturbative. The problem seems as 
though some of the methods of dynam- 
ical systems theory should apply to it, 
and there is always the tempting shadow 
of renormalization-group ideas waiting to 
be applied with the right formalism. So 
far we have been just nibbling around the 
edges of the problem. It is an extraordi- 
narily difficult one, but breaking it would 
provide new insight into the origin of ir- 
reversible processes in nature. 

The second feature of lattice gas mod- 
els, for phenomena reducible to natural 
skeletal worlds, is their efficiency com- 
pared to standard computational meth- 
ods. Both styles of computing reduce 
to inventing effective microworlds, but 
the conventional one is dictated and con- 
strained by a limited vocabulary of differ- 
ence techniques, whereas the lattice gas 
method designs a virtual machine inside 
a real one, whose architectural structure is 
directly related to physics. It is not a pri- 
ori clear that elegance equals efficiency. 
In many cases, lattice gas methods will 
be better at some kinds of problems, es- 
pecially ones involving highly complex 
systems, and in others not. Its usefulness 
will depend on cleverness and the prob- 
lem at hand. At worst the two ways of 
looking at the microphysics are comple- 
mentary and can be used in various mix- 
tures to create a beautiful and powerful 
computational tool. 

We close this article with a series of 
conjectures. The image of the physical 
world as a skeletal lattice gas is essen- 
tially an abstract mathematical framework 
for creating algorithms whose dynamics 

spans the same solution spaces as many 
physically important nonlinear partial dif- 
ferential equations that have a micrody- 
namical underpinning. There is no intrin- 
sic reason why this point of view should 
not extend to those rich nonlinear sys- 
tems which have no natural many-body 
picture. The classical Einstein-Hilbert ac- 
tion, phrased in the appropriate space, is 
no more complex than the Navier-Stokes 
equations. It should be possible to in- 
vent appropriate skeletal virtual comput- 
ers for various gauge field theories, be- 
ginning with the Maxwell equations and 
proceeding to non-Abelian gauge mod- 
els. Quantum mechanics can perhaps 
be implemented by using a variation on 
the stochastic quantization formulation of 
Nelson in an appropriate gas. When such 
models are invented, the physical mean- 
ing of the skeletal worlds is open to in- 
terpretation. It may be they are only a 
powerful mathematical device, a kind of 
virtual Turing machine for solving such 
problems. But it may also be that they 
will provide a new point of view on the 
physical origin and behavior of quan- 
tum mechanics and fundamental field- 
theoretic descriptions of the world. 
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