#ifdef __APPLE__

#include <GLUT/glut.h>
#else

#include <GL/glut.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>

#define LATTICE_WIDTH 1000
#define LATTICE_HEIGHT 500

#define WINDOW_WIDTH LATTICE_WIDTH
#define WINDOW_HEIGHT LATTICE_HEIGHT

#define X_CUTOFF
#define FPS 4

[l

#define VECTOR_SPACING 6

#define POINT_SIZE 6
#define SPACING 1
#define Q 9
#tdefine DIM 2
#define BLOCK_DIM 8

#define LATTICE_SIZE LATTICE_WIDTH * LATTICE_HEIGHT * Q
#define LATTICE_LENGTH LATTICE_WIDTH * LATTICE_HEIGHT

#define OMEGA 1.5

int step = 0;
int fps = 0;

dim3 block(BLOCK_DIM, BLOCK_DIM, 1);
dim3 grid(LATTICE_.WIDTH / block.x, LATTICE_HEIGHT / block.y, 1);

float lattice[LATTICE HEIGHT * LATTICE WIDTH * QJ;
float tmp_lattice[LATTICE HEIGHT * LATTICE WIDTH * QJ;
int boundary[LATTICE_HEIGHT * LATTICE_WIDTH];

float *gpu_lattice;
float *gpu_tmp_lattice;

int *gpu_boundary;

__constant__ int gpu_e[Q * DIM];
__constant__ float gpu_weights[Q];
__constant__ float gpu_omega;

int e[Q * DIM]

= {0,0, 1,0, 0,1, -1,0, O,- ,1, -1,1, -1,-1, 1,-1};
float weights[Q] = 1

> 1, 1
{4.0/9.0, 1.0/9.0 , 1.0/9.0 , 1.0/9.0 , 1.0/9.0

>

1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0};

void init_cuda() {
cudaMalloc((void **) &gpu_lattice, LATTICE_SIZE);
cudaMalloc((void **) &gpu_tmp_lattice, LATTICE_SIZE);
cudaMalloc((void **) &gpu_boundary, LATTICE_LENGTH) ;

cudaMemcpy (gpu_-boundary, boundary, LATTICE_LENGTH, cudaMemcpyHostToDevice);

cudaMemcpyToSymbol (gpu_e, e, Q * DIM * sizeof(int));
cudaMemcpyToSymbol (gpu_weights, weights, Q * sizeof(float));

}

_global__ void resolve_collisions(float * gpu_-lattice, float * tmp_lattice)
{
int x blockIdx.x * BLOCK_DIM + threadIdx.x;
int y = blockIdx.y * BLOCKDIM + threadIdx.y;
int 1i,j;
int rho;
double ul[DIM];
double u_squared;
double u_dot_e[Q];
double f_eq;

double latticelQ];

for(i = 0; i < Q; i++) {
lattice[i] = gpu_latticel[y * LATTICE_WIDTH + x * Q + il;

}

rho = 0;
for(i = 0; i < Q; i++) {
rho += latticelil;

}

for(i = 0; i < DIM; i++) {
uli] = 0;

}

for(j = 0; j < Q; j++) {
for(i = 0; i < DIM; i++) {
uli] += lattice[j] * gpuel[j * DIM + i];

}

u_squared = 0;
for(i = 0; i < DIM; i++) {
u_squared += uli] * ulil;

}

for(i =
u_dot_e[i]
}
for(i = 0; i < Q; i++) {
for(j = 0; j < DIM; j++) {
u_dot_e[i] += ul[j] * gpu-el[i * DIM + j];
}

}

for(i = 0; i < Q; i++) {
f_eq = gpuweights[i] * (rho - 1.5 * u_squared + 3 * u.dot_e[i] +
4.5 * u_dot_e[i] * u_dot_el[il);
tmp_latticely * LATTICEWIDTH + x * Q + i] = (1.0 - OMEGA) * latticel[i]
+

0; i < Q; i++) {
=O;

OMEGA * f_eq;

}

_global__ void propagate(float * gpu lattice, float * gpu_tmp_lattice,
int * gpu boundary) {
int x = blockIdx.x * BLOCK_DIM + threadIdx.x;
int y = blockIdx.y * BLOCKDIM + threadldx.y;
int i, ex, e.y, new_x, new.y, new_i;
for(i = 0; i < Q; i++) {
ex = gpueli *x DIM];
ey = gpuel[i * DIM + 1];
/¥ new.r = (v + e.x + LATTICE_-WIDTH) % LATTICE_-WIDTH;*/

Va new.y = (y + ey + LATTICE_HEIGHT) % LATTICE_HEIGHT;*/
new.x = X + e_x;
newy = y + e_y;

new. i = (i + gpu_boundary[y * LATTICEWIDTH + x]*(2 + (1 & (i*4/Q)*3)))
% Q;

if(newx >= 0 && new.y >= 0 && newx < LATTICEWIDTH &&

new.y < LATTICE_HEIGHT) {

if(gpu_tmp_lattice[y * LATTICEWIDTH + x * Q + new_i] > 1.0/3.0)

gpu_lattice[new_y * LATTICE_WIDTH + new.x * Q + new_i] = 1.0/3.0;

}

else {

gpu_lattice[new_y * LATTICE_WIDTH + new.x * Q +new_i] =
gpu_tmp_latticel[y * LATTICEWIDTH + x * Q + i];

}

}
}
}

void next() {

// cudaMemcpy(gpu_lattice, lattice, LATTICE_SIZE, cudaMemcpyHostToDe-
vice);

// cudaMemcepy(gpu_tmp_lattice, tmp_lattice, LATTICE_SIZE, cudaMemcpyHost-
ToDevice);

resolve_collisions<<<grid, block>>>(gpu_lattice, gpu_tmp_lattice);

propagate<<<grid, block>>>(gpu_lattice, gpu_-tmp_lattice, gpu boundary);

// cudaMemcepy(lattice, gpu_lattice, LATTICE_SIZE, cudaMemcpyDeviceToHost);
// cudaMemcepy(tmp_lattice, gpu-tmp_lattice, LATTICE_SIZE, cudaMemcpyDe-
viceToHost);

}

void display() {
int x, y, 1, J;
int vx, v.y;
double slope[DIM];
double intensity;

glClear (GL_COLOR_BUFFER BIT | GL_DEPTH BUFFER BIT);
glloadIdentity();
glPointSize (POINT_SIZE) ;

glColor3£f (0.0, 1.0, 0.0);
glBegin (GL_POINTS) ;
for(y = 0; y < LATTICEHEIGHT; y++) {
for(x = X_CUTOFF; x < LATTICEWIDTH; x++) {
if(boundary[y * LATTICE_WIDTH + x]) {
glVertex3f(x, y, 0);
}

glEnd();

for (x = X_CUTOFF; x < LATTICEWIDTH; x += VECTOR_SPACING) {
for (y = 0; y < LATTICE_HEIGHT; y += VECTOR_SPACING) {
intensity = 0.0;
for(j = 0; j < DIM; j++) {
slopel[j]l = 0.0;
}

for(vx = x; vx < x + VECTOR_SPACING; v_x++) {
for(v.y = y; v.y < y + VECTOR_SPACING; v_y++) {
for(i = 0; i < Q; i++) {
for(j = 0; j < DIM; j++) {

intensity += lattice[v_y * LATTICE_WIDTH
+vx x Q +1il;

slopel[j] += e[i * DIM + j] * latticelv_y
* LATTICEWIDTH + v.x * Q + i];

}
}
}

for(j = 0; j < DIM; j++) {
slope[j] /= 0.5 * VECTOR_SPACING;

if(slope [DIM-1] < 0) {
glColor3£f(0.25 + intensity, intensity, intensity/3);

}
else {

glColor3f (intensity/3, intensity, 0.25 + intensity);
}

glBegin(GL_LINES) ;

glVertex3f(x, y, 0);

glVertex3f(x + slopel[0], y + slopell]l, 0);
glEnd();

glPointSize (POINT_SIZE/3) ;
glVertex3f (intensity, intensity, intensity);
glBegin (GL_POINTS);
glVertex3f (x,y,0);
glEnd();

}

glutSwapBuffers();

}

void idle() {

int i, j, k;

for (i = 2; i < X_CUTOFF; i++) {
for (j = LATTICE HEIGHT/2 - X CUTOFF; j < LATTICE HEIGHT/2 +
X_CUTOFF; j++) {
lattice[j * LATTICEWIDTH + i * Q + 1] = 0.25;

/* lattice[jIfi][5] = 0.05;%/
/% lattice[j][i][8] = 0.05;%/
tmp_lattice[j * LATTICE.WIDTH + i * Q + 1] = 0.25;
/* tmp_lattice[jIfi]/[5] = 0.05;%/
/¥ tmp_lattice[j[if[8] = 0.05;*/
}
}
if(step || !step) {
next();
step = 0;
}

cudaMemcpy(lattice, gpu_lattice, LATTICE_SIZE, cudaMemcpyDeviceToHost);
cudaMemcpy (tmp_lattice, gpu-tmp_lattice, LATTICE_SIZE, cudaMemcpyDeviceToHost);
if(fps == FPS) {
glutPostRedisplay();

fps -= FPS;
}
fps++;
}
void init_vars()
{
int i, j, k, 1;
for(i = 0; i < LATTICEWIDTH; i++) {
for(j = 0; j < LATTICE_HEIGHT; j++) {
boundary[i * LATTICE.WIDTH + j] = 0;
for(k = 0; k < Q; k++) {
lattice[j * LATTICEWIDTH + i * Q + k] = 0.10;
tmp_lattice[j * LATTICE_WIDTH + i * Q + k] = 0.10;
}
}
}
/% for (i = 0; i < X.CUTOFF; i++) {*/
Ve for (j = 0; j < LATTICE_.HEIGHT; j++) {*/
Ve for(k = 0; k< Q; k++) {*/
Ve lattice[j][i][k] = 0.2;%/

tmp_lattice[jl[iJ[k] = 0.2;*/
P/
P/
+/

for(i = LATTICE_.HEIGHT/3; i < S*LATTICE-WIDTH/4; i++) {*/
for(j = LATTICE_-WIDTH/S; j < 3*LATTICE_-HEIGHT/{; j++)

for(k = 0; k< Q; k++) {*/
lattice[jl[il[k] = 0.2;*/
. tmp_lattice[jl[iJ[k] = 0.2;*/
lattice[j][i][1] = 0.2;%/
tmp_lattice[j][i][1] = 0.2;*/
+/
Y/

for(i = LATTICE_-HEIGHT/6; i < LATTICE-WIDTH/3; i++) {*/
for(j = LATTICE.WIDTH/6; j < LATTICE.HEIGHT/S; j++)

for(k = 0; k< Q; k++) {*/
lattice[i[[j][k] = 1;*/
Y/
+/
Y/

int x, y;

double d_theta = 0.01;
double theta = d_theta;

int radius = 12;

for(i = 0; i < 2*M_PI/d_theta; i++, theta += d_theta) {

for(j = 0; j < radius; j++) {
for(k = 1; k < 1; k++) {
x = k*LATTICE_WIDTH/6 + j * cos(theta);
y = k*LATTICE_HEIGHT/3 + j * sin(theta);
boundary[y * LATTICE_WIDTH + x] = 1;
for(1 = 0; 1 < Q; 1++) {
lattice[y * LATTICE.WIDTH + x * Q + 1] = O;
tmp_lattice[y * LATTICE.WIDTH + x * Q + 1] = 0;

}

for(i = 0; i < 2*M_PI/d_theta; i++, theta += d_theta) {

for(j = 0; j < radius; j++) {

x = LATTICE_WIDTH/2 + j * cos(theta);

y LATTICE_HEIGHT/2 + j o* sin(theta);

boundary[y * LATTICE_WIDTH + x] = 1;

for(k = 0; k < Q; k++) {
latticely * LATTICEWIDTH + x * Q + k] = 0;
tmp_lattice[y * LATTICE.WIDTH + x * Q + k] = 0;

for(z = 0; # < LATTICE.-WIDTH; w4+) {
boundaryfz] = 1;
boundary/(LATTICE_HEIGHT-1) * LATTICE_-WIDTH + z] = 1;
for(k = 0; k < Q; k++) {

}
}
/*
k] = 0;
Q + k] =0;
}
}
/

lattice[r * Q + k] = 0;
tmp_lattice[z * Q + k] = 0;

lattice[(LATTICE_HEIGHT-1) * LATTICE_-WIDTH + z * Q +

tmp_lattice[(LATTICE_HEIGHT-1) * LATTICE_WIDTH + = *

Ve for(x = 0; x < LATTICE_HEIGHT; z++) {*/

Va boundaryfz] = 1;*/

Va boundary[z/[LATTICE_-WIDTH-1] = 1;*/

J* for(k = 0; k < Q; k++) {*/

/* lattice[z][0][k] = 0;*/

Va tmp_lattice[z][0][k] = 0;*/

/* lattice[t][LATTICE-WIDTH-1][k] = 0;*/

J* tmp_lattice[r][LATTICE_-WIDTH-1][k] = 0;*/
/* +/

/Y

}

void init_gl()

{

glClearColor(0.0, 0.0, 0.0, 0.0);

glMatrixMode (GL_PROJECTION) ;
glloadIdentity();

gl0rtho(0.0, WINDOW.WIDTH, 0.0, WINDOW.HEIGHT, -20.0, 20.0);
glMatrixMode (GL_MODELVIEW) ;

glHint (GL_.PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
glShadeModel (GL_SMOOTH) ;
glPointSize (POINT_SIZE) ;
glLineWidth (POINT_SIZE);

}

void keyboard(unsigned char key, int x, int y) {
if(key == ’n’) {
step = 1;
}

}

int main(int argc, charx* argv) {
glutInit(&argc, argv);
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glutInitWindowSize (WINDOW_WIDTH, WINDOW_HEIGHT);
glutCreateWindow ("D2Q9") ;
glEnable (GL_DEPTH_TEST) ;
init_vars(Q);
init_cuda();
init g1
glutDisplayFunc(display) ;
glutKeyboardUpFunc (keyboard) ;
glutIdleFunc(idle);
glutMainLoop();
return O;

