
#ifdef APPLE
#include <GLUT/glut.h>

#else
#include <GL/glut.h>

#endif

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>

#define LATTICE WIDTH 1000
#define LATTICE HEIGHT 500

#define WINDOW WIDTH LATTICE WIDTH
#define WINDOW HEIGHT LATTICE HEIGHT

#define X CUTOFF 5
#define FPS 4

#define VECTOR SPACING 6

#define POINT SIZE 6
#define SPACING 1

#define Q 9
#define DIM 2
#define BLOCK DIM 8
#define LATTICE SIZE LATTICE WIDTH * LATTICE HEIGHT * Q
#define LATTICE LENGTH LATTICE WIDTH * LATTICE HEIGHT

#define OMEGA 1.5

int step = 0;
int fps = 0;

dim3 block(BLOCK DIM, BLOCK DIM, 1);
dim3 grid(LATTICE WIDTH / block.x, LATTICE HEIGHT / block.y, 1);

float lattice[LATTICE HEIGHT * LATTICE WIDTH * Q];
float tmp lattice[LATTICE HEIGHT * LATTICE WIDTH * Q];
int boundary[LATTICE HEIGHT * LATTICE WIDTH];

float *gpu lattice;
float *gpu tmp lattice;

1

int *gpu boundary;
constant int gpu e[Q * DIM];
constant float gpu weights[Q];
constant float gpu omega;

int e[Q * DIM] = {0,0, 1,0, 0,1, -1,0, 0,-1, 1,1, -1,1, -1,-1, 1,-1};
float weights[Q] = {4.0/9.0, 1.0/9.0 , 1.0/9.0 , 1.0/9.0 , 1.0/9.0
,

1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0};

void init cuda() {
cudaMalloc((void **) &gpu lattice, LATTICE SIZE);
cudaMalloc((void **) &gpu tmp lattice, LATTICE SIZE);
cudaMalloc((void **) &gpu boundary, LATTICE LENGTH);

cudaMemcpy(gpu boundary, boundary, LATTICE LENGTH, cudaMemcpyHostToDevice);

cudaMemcpyToSymbol(gpu e, e, Q * DIM * sizeof(int));
cudaMemcpyToSymbol(gpu weights, weights, Q * sizeof(float));

}

global void resolve collisions(float * gpu lattice, float * tmp lattice)
{
int x = blockIdx.x * BLOCK DIM + threadIdx.x;
int y = blockIdx.y * BLOCK DIM + threadIdx.y;

int i,j;
int rho;
double u[DIM];
double u squared;
double u dot e[Q];
double f eq;

double lattice[Q];

for(i = 0; i < Q; i++) {
lattice[i] = gpu lattice[y * LATTICE WIDTH + x * Q + i];

}

rho = 0;
for(i = 0; i < Q; i++) {

rho += lattice[i];
}

for(i = 0; i < DIM; i++) {
u[i] = 0;

}

2

for(j = 0; j < Q; j++) {
for(i = 0; i < DIM; i++) {

u[i] += lattice[j] * gpu e[j * DIM + i];
}

}

u squared = 0;
for(i = 0; i < DIM; i++) {

u squared += u[i] * u[i];
}

for(i = 0; i < Q; i++) {
u dot e[i] = 0;

}
for(i = 0; i < Q; i++) {

for(j = 0; j < DIM; j++) {
u dot e[i] += u[j] * gpu e[i * DIM + j];

}
}

for(i = 0; i < Q; i++) {
f eq = gpu weights[i] * (rho - 1.5 * u squared + 3 * u dot e[i] +

4.5 * u dot e[i] * u dot e[i]);
tmp lattice[y * LATTICE WIDTH + x * Q + i] = (1.0 - OMEGA) * lattice[i]

+
OMEGA * f eq;

}
}

global void propagate(float * gpu lattice, float * gpu tmp lattice,
int * gpu boundary) {

int x = blockIdx.x * BLOCK DIM + threadIdx.x;
int y = blockIdx.y * BLOCK DIM + threadIdx.y;
int i, e x, e y, new x, new y, new i;

for(i = 0; i < Q; i++) {
e x = gpu e[i * DIM];
e y = gpu e[i * DIM + 1];

/* new x = (x + e x + LATTICE WIDTH) % LATTICE WIDTH;*/
/* new y = (y + e y + LATTICE HEIGHT) % LATTICE HEIGHT;*/

new x = x + e x;
new y = y + e y;
new i = (i + gpu boundary[y * LATTICE WIDTH + x]*(2 + (1 & (i*4/Q)*3)))

% Q;
if(new x >= 0 && new y >= 0 && new x < LATTICE WIDTH &&
new y < LATTICE HEIGHT) {
if(gpu tmp lattice[y * LATTICE WIDTH + x * Q + new i] > 1.0/3.0)

3

{
gpu lattice[new y * LATTICE WIDTH + new x * Q + new i] = 1.0/3.0;
}
else {
gpu lattice[new y * LATTICE WIDTH + new x * Q +new i] =

gpu tmp lattice[y * LATTICE WIDTH + x * Q + i];
}
}
}

}

void next() {
// cudaMemcpy(gpu lattice, lattice, LATTICE SIZE, cudaMemcpyHostToDe-
vice);
// cudaMemcpy(gpu tmp lattice, tmp lattice, LATTICE SIZE, cudaMemcpyHost-
ToDevice);

resolve collisions<<<grid, block>>>(gpu lattice, gpu tmp lattice);
propagate<<<grid, block>>>(gpu lattice, gpu tmp lattice, gpu boundary);

// cudaMemcpy(lattice, gpu lattice, LATTICE SIZE, cudaMemcpyDeviceToHost);
// cudaMemcpy(tmp lattice, gpu tmp lattice, LATTICE SIZE, cudaMemcpyDe-
viceToHost);

}

void display() {
int x, y, i, j;
int v x, v y;
double slope[DIM];
double intensity;

glClear(GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT);
glLoadIdentity();
glPointSize(POINT SIZE);

glColor3f(0.0, 1.0, 0.0);
glBegin(GL POINTS);

for(y = 0; y < LATTICE HEIGHT; y++) {
for(x = X CUTOFF; x < LATTICE WIDTH; x++) {

if(boundary[y * LATTICE WIDTH + x]) {
glVertex3f(x, y, 0);

}
}

}
glEnd();

4

for (x = X CUTOFF; x < LATTICE WIDTH; x += VECTOR SPACING) {
for (y = 0; y < LATTICE HEIGHT; y += VECTOR SPACING) {

intensity = 0.0;
for(j = 0; j < DIM; j++) {

slope[j] = 0.0;
}
for(v x = x; v x < x + VECTOR SPACING; v x++) {

for(v y = y; v y < y + VECTOR SPACING; v y++) {
for(i = 0; i < Q; i++) {

for(j = 0; j < DIM; j++) {
intensity += lattice[v y * LATTICE WIDTH

+ v x * Q + i];
slope[j] += e[i * DIM + j] * lattice[v y

* LATTICE WIDTH + v x * Q + i];
}

}
}

}

for(j = 0; j < DIM; j++) {
slope[j] /= 0.5 * VECTOR SPACING;

}
if(slope[DIM-1] < 0) {

glColor3f(0.25 + intensity, intensity, intensity/3);
}
else {

glColor3f(intensity/3, intensity, 0.25 + intensity);
}
glBegin(GL LINES);

glVertex3f(x, y, 0);
glVertex3f(x + slope[0], y + slope[1], 0);

glEnd();

glPointSize(POINT SIZE/3);
glVertex3f(intensity, intensity, intensity);
glBegin(GL POINTS);

glVertex3f(x,y,0);
glEnd();

}
}

glutSwapBuffers();
}

void idle() {

5

int i, j, k;

for (i = 2; i < X CUTOFF; i++) {
for (j = LATTICE HEIGHT/2 - X CUTOFF; j < LATTICE HEIGHT/2 +

X CUTOFF; j++) {
lattice[j * LATTICE WIDTH + i * Q + 1] = 0.25;

/* lattice[j][i][5] = 0.05;*/
/* lattice[j][i][8] = 0.05;*/

tmp lattice[j * LATTICE WIDTH + i * Q + 1] = 0.25;
/* tmp lattice[j][i][5] = 0.05;*/
/* tmp lattice[j][i][8] = 0.05;*/

}
}

if(step || !step) {
next();
step = 0;

}
cudaMemcpy(lattice, gpu lattice, LATTICE SIZE, cudaMemcpyDeviceToHost);
cudaMemcpy(tmp lattice, gpu tmp lattice, LATTICE SIZE, cudaMemcpyDeviceToHost);

if(fps == FPS) {
glutPostRedisplay();
fps -= FPS;

}
fps++;

}

void init vars()
{

int i, j, k, l;

for(i = 0; i < LATTICE WIDTH; i++) {
for(j = 0; j < LATTICE HEIGHT; j++) {

boundary[i * LATTICE WIDTH + j] = 0;
for(k = 0; k < Q; k++) {

lattice[j * LATTICE WIDTH + i * Q + k] = 0.10;
tmp lattice[j * LATTICE WIDTH + i * Q + k] = 0.10;

}
}

}

/* for (i = 0; i < X CUTOFF; i++) {*/
/* for (j = 0; j < LATTICE HEIGHT; j++) {*/
/* for(k = 0; k < Q; k++) {*/
/* lattice[j][i][k] = 0.2;*/

6

/* tmp lattice[j][i][k] = 0.2;*/
/* }*/
/* }*/
/* }*/

/* for(i = LATTICE HEIGHT/3; i < 3*LATTICE WIDTH/4; i++) {*/
/* for(j = LATTICE WIDTH/3; j < 3*LATTICE HEIGHT/4; j++)
{*/
/* for(k = 0; k < Q; k++) {*/
/* lattice[j][i][k] = 0.2;*/
/* tmp lattice[j][i][k] = 0.2;*/
/* }*/
/* lattice[j][i][1] = 0.2;*/
/* tmp lattice[j][i][1] = 0.2;*/
/* }*/
/* }*/

/* for(i = LATTICE HEIGHT/6; i < LATTICE WIDTH/3; i++) {*/
/* for(j = LATTICE WIDTH/6; j < LATTICE HEIGHT/3; j++)
{*/
/* for(k = 0; k < Q; k++) {*/
/* lattice[i][j][k] = 1;*/
/* }*/
/* }*/
/* }*/

int x, y;
double d theta = 0.01;
double theta = d theta;
int radius = 12;

for(i = 0; i < 2*M PI/d theta; i++, theta += d theta) {
for(j = 0; j < radius; j++) {

for(k = 1; k < 1; k++) {
x = k*LATTICE WIDTH/6 + j * cos(theta);
y = k*LATTICE HEIGHT/3 + j * sin(theta);
boundary[y * LATTICE WIDTH + x] = 1;
for(l = 0; l < Q; l++) {

lattice[y * LATTICE WIDTH + x * Q + l] = 0;
tmp lattice[y * LATTICE WIDTH + x * Q + l] = 0;

}
}

}
}

for(i = 0; i < 2*M PI/d theta; i++, theta += d theta) {

7

for(j = 0; j < radius; j++) {
x = LATTICE WIDTH/2 + j * cos(theta);
y = LATTICE HEIGHT/2 + j * sin(theta);
boundary[y * LATTICE WIDTH + x] = 1;
for(k = 0; k < Q; k++) {

lattice[y * LATTICE WIDTH + x * Q + k] = 0;
tmp lattice[y * LATTICE WIDTH + x * Q + k] = 0;

}
}

}

/*
for(x = 0; x < LATTICE WIDTH; x++) {

boundary[x] = 1;
boundary[(LATTICE HEIGHT-1) * LATTICE WIDTH + x] = 1;
for(k = 0; k < Q; k++) {

lattice[x * Q + k] = 0;
tmp lattice[x * Q + k] = 0;

lattice[(LATTICE HEIGHT-1) * LATTICE WIDTH + x * Q +
k] = 0;

tmp lattice[(LATTICE HEIGHT-1) * LATTICE WIDTH + x *
Q + k] = 0;

}
}

*/

/* for(x = 0; x < LATTICE HEIGHT; x++) {*/
/* boundary[x] = 1;*/
/* boundary[x][LATTICE WIDTH-1] = 1;*/
/* for(k = 0; k < Q; k++) {*/
/* lattice[x][0][k] = 0;*/
/* tmp lattice[x][0][k] = 0;*/

/* lattice[x][LATTICE WIDTH-1][k] = 0;*/
/* tmp lattice[x][LATTICE WIDTH-1][k] = 0;*/
/* }*/
/* }*/
}

void init gl()
{

glClearColor(0.0, 0.0, 0.0, 0.0);

glMatrixMode(GL PROJECTION);
glLoadIdentity();

8

glOrtho(0.0, WINDOW WIDTH, 0.0, WINDOW HEIGHT, -20.0, 20.0);

glMatrixMode(GL MODELVIEW);

glHint(GL PERSPECTIVE CORRECTION HINT, GL NICEST);
glShadeModel(GL SMOOTH);
glPointSize(POINT SIZE);
glLineWidth(POINT SIZE);

}

void keyboard(unsigned char key, int x, int y) {
if(key == ’n’) {

step = 1;
}

}

int main(int argc, char** argv) {
glutInit(&argc, argv);
glutInitDisplayMode(GLUT DOUBLE | GLUT RGB | GLUT DEPTH);
glutInitWindowSize(WINDOW WIDTH, WINDOW HEIGHT);
glutCreateWindow("D2Q9");
glEnable(GL DEPTH TEST);
init vars();

init cuda();
init gl();
glutDisplayFunc(display);
glutKeyboardUpFunc(keyboard);
glutIdleFunc(idle);
glutMainLoop();
return 0;

}

9

