
HPP, FHP, and FHCP Implementation

Abdulmajed Dakkak

June 28th, 2008

Computational Fluid Dynamics with CA

Visualization

In virtually all the papers read, the lattice grid is viewed as a vector field. This
is done for several reasons:

• It’s easy to visualize on paper whether the algorithm is working.

• It’s the simplest to implement.

In NKS, for example, Wolfram uses a 96× 96 subgrid to approximate a vector
direction on a 6 million lattice grid. Previously in his 1987 paper, Wolfram used
. . . . for a 4600(?) lattice grid.

HPP Model

We represent each lattice with 4 vectors, each containing is stored in its own
matrix. This means that a[i][j] contains the a vector component of the lattice
on the ith row and jth column. With this representation in place, we perform
the following to compute the next frame.

• Resolve collisions — the collisions are performed and stored in a temporary
collision matrix.

• Propagation — the propagation is performed and values are copied from
the temporary collision matrix into the a, b, c, and d matrices.

1

Collision

Four temporary matrices are created and are called K_a, K_b, K_c, and K_d
to signify which direction they correspond to. The vector K_a[i][j] is the
updated based on the HPP collision rules.

One can represent the collision rules as a series of binary statements. The best
example is found in1 where the authors represent the collision rules as a binary
statement. Examples of the same binary statement can be found in other papers,
however (need to record them)

$a = a⊗ [(a ∧ c ∧ ¬(b ∨ d)) ∨ (b ∧ d ∧ ¬(a ∨ c))]$

Where the logic operator symbols are

• ¬ is the not operator

• ⊗ is the xor operator

• ∨ is the or operator

• ∧ is the and operator

In C, the following code implements the above rule:

for (x = 0; x < LATTICE_WIDTH; x++) {
for (y = 0; y < LATTICE_HEIGHT; y++) {

change = (a[x][y] & c[x][y] & ~(b[x][y] | d[x][y])) |
(b[x][y] & d[x][y] & ~(a[x][y] | c[x][y]));

K_a[x][y] = a[x][y] ^ change;
K_b[x][y] = b[x][y] ^ change;
K_c[x][y] = c[x][y] ^ change;
K_d[x][y] = d[x][y] ^ change;

}
}

1Wolf-Gladrow, Dieter. Lattice-Gas Cellular Automata and Lattice Boltzmann Models:
an Introduction. Santa Clara: Springer-Verlag TELOS, 2000. (pdf)

2

The boolean expression allows us to perform the computation needed without
the use of if-else statements. It should be also noted that we will never go
outside the bounds of the array, the same cannot be said about the propagation
step. Also note that the expression

(a1[x][y] & c1[x][y] & ~(b1[x][y] | d1[x][y])) |
(b1[x][y] & d1[x][y] & ~(a1[x][y] | c1[x][y]))

Is repeated four times in the binary representation, which is why we store it in
a separate value to reduce three computations.

Propagation

The HPP propagation step is the process of moving velocity vectors in the same
direction they are moving in after the collisions are resolved. Because of the
way we oriented our grid, we made this step unnecessarily complicated. Also
it’s not clear if our representation has any advantages over a regular square grid.
Future implementation (if one is needed) would use a regular square grid.

We use the following code to propagation the vectors in the lattice

a[i][j] = K_a[i-1][j-1];
b[i][j] = K_b[i-1][j+1];
c[i][j] = K_c[i+1][j+1];
d[i][j] = K_d[i+1][j-1];

it should be evident that we will run out of bounds if we run the above piece
of code over the width of the lattice array. Since we do not want to enforce
any boundary conditions at this stage of the process, we place our lattice on a
toroidal surface. This can be easily implement in C by noting that the following
way to access and store array elements creates the toroidal surface:

3

t[(i+n + LATTICE_HEIGHT) % LATTICE_HEIGHT][(j+m + LATTICE_WIDTH) % LATTICE_WIDTH]

and will also always be in the bounds of the matrix representation.

Optimizations

Since C has no differentiation between a boolean value and a short, we can over-
load a short variable to contain multiple vector values. The boolean expression
does not change, but as you see from the figure below, the propagation step has
to.

The Code

There are a few differences between our implementation and the one described
above:

1. The variables are called c1, c2, c3, and c4 rather than a, b, c, and d. The
temporary collision arrays have also been renamed to k1, k2, k3, and k4.

2. Our computation of blocks of vectors at a time forces us to use checkerboard
propagation.

The crux of the code for HPP is provided bellow

int x, y;
short change;

// Resolve Collisions

4

for (x = 0; x < LATTICE_WIDTH; x++) {
for (y = 0; y < LATTICE_HEIGHT; y++) {

change = (a1[x][y] & c1[x][y] & ~(b1[x][y] | d1[x][y])) |
(b1[x][y] & d1[x][y] & ~(a1[x][y] | c1[x][y]));

a2[x][y] = a1[x][y] ^ change;
b2[x][y] = b1[x][y] ^ change;
c2[x][y] = c1[x][y] ^ change;
d2[x][y] = d1[x][y] ^ change;

}
}
// Propagate
for (x = 1; x < LATTICE_WIDTH - 1; x++) {

for (y = 1; y < LATTICE_HEIGHT - 1; y += 2) {
a1[x][y] = (a2[x][y - 1] >> 1) + (a2[x - 1][y - 1] << LAST);
b1[x][y] = b2[x][y - 1];
c1[x][y] = c2[x][y + 1];
d1[x][y] = (d2[x][y + 1] >> 1) + (d2[x - 1][y + 1] << LAST);

a1[x][y + 1] = a2[x][y];
b1[x][y + 1] = (b2[x][y] << 1) + (b2[x + 1][y] >> LAST);
c1[x][y + 1] = (c2[x][y + 2] << 1) + (c2[x + 1][y + 2] >> LAST);
d1[x][y + 1] = d2[x - 1][y + 2];

}
}

CUDA

Never implemented.

5

FHP Model

Collision

Propagation

The Code

Optimizations

CUDA

FCHC Model

In the Face Centered Hyper Cubic model, you have 24 vectors. 16 correspond
to the vertexes of the hyper cube while the other 8 correspond to the center of
the squares in the hyper cube.

Reduction

Since you cannot store the entire table, you consider only states that have a
normalized momentum. The coordinates of the momentum q are defined by

$qα =
∑24
i=0 SiCiα$

where Si is a boolean variable signifying the presence or absence of a particle
with velocity Ci. The momentum is normalized if the coordinates satisfy

$q1 > q2 > q3 > q4 > |q1 − q2 − q3|$

Different isometries are then applied if one of the following conditions are sat-
isfied in the following sequence:

• if q1 < 0, then S1 is applied to q

• if q2 < 0, then S2 is applied to q

• if q3 < 0, then S3 is applied to q

• if q4 < 0, then S4 is applied to q

• if q1 < q2, then P12 is applied to q

• if q3 < q4, then P34 is applied to q

• if q1 < q3, then P13 is applied to q

6

• if q2 < q4, then P24 is applied to q

• if q2 < q3, then P23 is applied to q

• if q1 + q4 < q2 + q4, then Σ1 is applied to q

• if q1 < q2 + q3 + q4, then Σ2 is applied to q

Where

• Sα is the symmetry with respect to the plane xα = 0

• Pαβ is the symmetry with respect to the plane xα = xβ

• Σ1 is the symmetry with respect to the plane x1 + x4 = x2 + x3

• Σ2 is the symmetry with respect to the plane x1 = x2 + x3 + x4

7

