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Chapter 13

The Hypergraphics Honors Seminar at Illinois

GEORGE K. FRANCIS

One edition of Math 198, the Freshman Honors Seminar in Mathematics at the
University of Illinois at Urbana-Champaign, is an intensive introduction to real time
interactive geometrical programming. Its name. "Hypergraphics," connects to David
Brisson's (1978) proposed synthesis of art and mathematics for the purpose of revealing the
mysteries of space beyond the confines of our 3-dimensional perception (Banchoff, 1990).

The course is designed for novices, but experienced programmers are welcome,
provided they contract for an individual study p roj ect commensurate with their skills. Most
beginners also reach a level of competence by the middle of the course to complete a project
of their own. Students work on Apple Llgs and Silicon Graphics Iris computers. They
program in BASIC, Forth, and C. Of course, these languages are augmented by graphics
packages. For the first, &-GRAFIX is a machine language extension of Applesoft BASIC
which was written by students in the UIMATH.APPLE I ab over the past four years
(Sandy ig, 1990). The ISYS Forth compiler is the product of a local software engineer (Illyes,
1988). It was developed, to a large extent, with the needs of the Apple Lab in mind. The
graphics library on the Iris, known as gl, is such an effective resource that it is possible to
learn enough basic C to write a respectable real-time interactive computer animation
project during just one seine iter.

The students in this elec ive course are generally members of the University of Illinois
Campus Honors Program , hich selects 500 bright students from a population of 27,000
undergraduates. Thus, the members of my classroom compare well with the students
taking similar courses at private universities. For example, a somewhat similar course at
Princeton was taught and reported on by Conway, Doyle, and Thurston (1901)

In this chapter I shall describe my course in some technical detail so that the reader may
not only profit from my experience but may weigh the basis of my opinions regarding high-
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tech education. Respecting the principle that a mathematicspaper should always contain
"something old, something new, something borrowed, and something true," I include the
complete, annotated, 250-line source-code for illiSnail, a real-time interactive computer
animation (RTICA) which my students use, study, and modify on the Iris 4D/25TG
computers in the Renaissance Experimental Laboratory (REL) of the National Center for
Supercomputing Applications (NCSA) of the University of Illinois at Urbana-Champaign
(UIUC).

Portrait of an Honors Student

Let me begin, by way of an anecdotal documentation, by sketching the activities of a
recent, not atypical student. Pablo was technically a freshman but came to college with an
excellent preparation. Together with his prodigious talent, this allowed him to compete
with the juniors and seniors for first place in the class of fifteen. Pablo's first "essay" was
a whimsical animation in &-GRAFIX of swimming fish blowing bubbles. His second was
the best of only three solutions for an assignment to write a concise, recursive program in
Forth that draws a Sierpinski Triangle. The class studies a series of very simple programs
which are small enough to fit into gyre's mental "hip-pocket" and can be played on every
computer. Pablo's "commentary" on the one for the lesson on Logistic Chaos was to modify
it and so draw the well known bifurcation diagram of this famous dynamical system.

Two years ago, my teaching assistant, Glenn Chappell, had brought with him a superb
piece of pedagogical software. His t rogram is written in BASIC and 65816 machine
language. It is, in fact, an interpreter for a tiny language, CSL, which Glenn invented for
simulating the cellular automata popularized by Kee Dewdney in the pages of the Scientific
American. Pablo completed the assigned experiments with CSL, comparing them intelli-
gently to their older Forth versions. In my graduate Geometrical Graphicscourse on the
Irises, we develop RTICAs which have a feature for recording the user's activity in a script
which can then be played back automatically. Although such student projects are often
user-hostile, they deal with interesting topics that appeal to the honors students. The
"movie-making' feature makes it possible to incorporate them into lessons for Math 198.
Pablo's cohort used the Snailhunt RTICA to explore a certain Mobius band located on the
3-dimensional hypersphere in 4-space (Francis, 1990). (This RTICA is discussed in detail
in a later section of this chapter.) Pablo's movie and brief documentation showed an unusual
level of curiosity and good mathematical free association. He manipulated the program to
produce fanciful shapes reminiscent of public art on the Daley Plaza in Chicago. Working
out the answers to the conjectures he made could have become his semester project. But he
chose a much more ambitious one: to implement Carter Bay's 3-dimensional version of
Conway's Game of Life as described in Dewdney's (1988) popular book, The Armchair
IJaiverse.

Pablo' s project was the most notab le achievement in that class. He wrote his own RTI CA
of a 3-dimensional Life automaton. With only a high school AP-Pascal course behind him,
he learned and mastered C/Unix/gl on the Iris and wrote a program few of the students in
my graduate course could write. The more ambitious student projects often receive
extensive help from the staff. Pablo managed all that pretty much on his own.
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Pedagogical Notes

Although Math 198 is similar to Thurston's Math 199 at Princeton (Conway, Doyle, &
Thurston, 1991), there are enough differences to warrant a closer comparison of these two
courses. In fact, my Math 198 more closely resembles the two-week intensive course,
"Geometry and the Imagination," taught by John Conway, Peter Doyle, Jane Gilman, and
William Thurston at the Geometry Center, summer 1991. Their course was followed by a
ten-week research and training program for some of the high school and college students
who took the short course. This permitted the completion of substantial projects, some of
which included computer visualization (Marden, 1991).

Math 198 at Illinois is a 3 credit course, though all, including the instructor and the
teaching assistant, spend far more time on this course than is customary for an undergrad-
uate course with 3 assigned contact hours per week. Quality educp ion at a large, state
supported university requires such dedication and extra effort.

The Project

Each student has a project to complete. The project presentation has an oral component.
This takes place during the final week of the semester, seminar-style and with cake and sort-
drink refreshments. Typically, the student explains what the program is about and how to
operate it. An abbreviated version of hands-on demonstration earlier in the course is
followed (sometimes preceded) by a 10-20 minute lecture at the white-board. The demon-
stration and segments of the mini-lecture are videotaped. The demo taping is occasionally
staged and repeated to improve its quality. However, little of the mini-lecture and none of
the discussion is taped, to encourage both presenter and audience to express themselves
freely. Our unexpected experience is that, unlike the author's generation, members of
today's TV generation show practically no camera shyness or stage fright. Also, they know
how the videotapes will be used: They are shown at the Honors House on special occasions
for instance, to visiting parents ofprospective participants. Older students, who are h elping
out during these orientation sessions, are delighted to watch their colleagues "perform"
their final for Math 198. Last, year's tapes are also shown in class to explain to the students
what is expected of them.

The Grade

A. second major difference from the Princeton course is how the final grade is
determined A course like Math 198 is unsuitable for either a pass/fail or a standard grading
scheme. The temptation to procrastinate or merely audit such a course is too great,
especially for the freshman and sophomore. On the other hand, inhomogeneity of
preparation, experience, and motivation precludes competitive examinations and compar-
ative evaluation. Instead, each student receives a "contract-grade" according to the
following announced and periodically repeated formula. Once the student has completed
the basic assignments and tutorials, he has earned a "gentleman's C' for the course. All that
needs to be done for an A is to complete the semester project. A student whose project is well
started but incomplete receives a B. This can be changed to an A once the missing work is
submitted.

I have never had to give the gentleman's C, and the drop rate is about 1 to 2 students
per class of 15.20 students. Of course, everyone is individually evaluated to facilitate
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writing recommendations, which many students in the Campus Honors Program eventu-
ally request. Also, generous praise and encouragementare offered privately as needed.

The plan for the project is negotiated with the instructor. The pre-proposa' proposal,
progress report, and (rarely) preliminary draft are carefully monitored and commented on.
The principle guiding the choice and ambitiousness of the project is for the student to apply
newly acquired mathematical and computing skills The project is complete insofar as the
pr Aram works, has been publicly presented, and the written documentation is acceptable.
The latter includes a one-page operating instruction, a carefulspecification of the hardware
configuration, a narrative essay with bibliography on the mathematics, a hand-annotated
printout of the program, and a technical note on computational difficulties that were solved
or remain to be solved by the next student building on the present project. The class
materials are to a large extent the work of previous students, often with emphasison their
shortcomings. Thus some of the best projects each year are corrected continuations and
extensions of previous projects. The p roj ect is treated as a contractual agreement to p roduce
a certain piece of work by a del line.

Manipulatives

The Princeton course makes excellent use of geometrical artifacts, including mirrors
and construction kits. We make no extensive use of physical models or experiments, except
on the computers and, to a much lesser extent, with video equipmilit. This is entirely the
consequence of our severely limited physical facilities at Illinois.

The Journal

In the Princeton course the student keeps a bound journal into which assignments,
class notes, and other appropriate items are either pasted (ifcomplet don a word-processor)
or entered by hand. While I have always encouraged my students to keep a 3-ring notebook
for handouts, clean copies of their class notes., homework, and tests, I had assigned the
keeping of an "intellectual journal" only last year after learning about its use in the
Princeton course. In the fall we assigned journal keeping to some 100 students, who were
preparing to become elementary st hool teachers, in the lecture/lab course on "Experimental
Arithmetic" (Francis, 1992) which also has a programmingproject component. The logistics
of this multisection course, the immaturity of the students, and our neglect to collect the
journals regularly and monitor their content, led to the failure of this first experiment. On
examination at the end of the semester, 90percent of the journalswere nothing more than
daily diaries which recorded the trials and tribulations ofan unfamiliar and difficult lab
course. Except for the psychological benefits of catharsis for the students and scathing
criticism for the instructional staff, these journals were a waste of resources. Quite the
contrary was the case for the journals kept by the Math 198 students the following spring.
I explained from the start the Princeton model of the journal, including its pros and cons,
and invited my students to experiment with their own format. The only requirement was
that the hard-bound journals (no fair tea ring out pages) had ample margins and blank even -
pages for comments and corrections. The journals were collected and read two or three
times during the semester and commented on, copiously in some cases. A written exchange
developed between student and t, acher in a few journals, an almost Victorian dialogue of
glosses. On the first round, about a third of the students had nearly empty journals or
started writing a diary instead. Most of these had mended their way by the time of the
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second reading. Some of the journals were astoundingly good right from the start. Of
course, one must not forget the exceptionally verbal, high honors cohort taking Math 198.

The journals proved io have unexpected benefits also for the professor, not the least of
which was the fact that a 10x15 inch, black, hardbound journal is difficult to lose or
misplace. Secondly, it provided an opportunity for individual instruction. Erroneous or
incomplete journal entries prompted me to write a mini-lesson right into the journal. This
information and elaboration beyond the class instruction went directly to the interested
student, without wasting other people's time. Finally, cumulative progress could be
monitored over the semester without having to decipher the numerically encoded entries
of a gradebook. I even got a second chance to correct my own misleading "corrections" on
re reading them at a later time.

Facilities

Math 198 has been taught for three years in succession in an essentially identical
fashion. This particular configuration of hardware, software, students, instructors and
content was based on the experience with different configurations of related courses taught
under the auspices of the UIMATH.APPLE Lab since 1983. It was therefore uniquely
suited to its academic environment. Without similar experimentation and fine tuning it is
unlikely that such a course can be successfully taught in another environment. Neverthe-
less, we hope that a careful description of its configuration below will be of use also to
someone planning such a course under their own circumstances.

The Student Cohort

Math 198 is for students in the Campus Honors Program, but others with comparable
credentials may also take the course. The University of Illinois Campus Honors Program
admits, on a competitive basis, circa 500 students from an undergraduate student body of
ca 27,000. Or, approximately 100 students from over 600 applicants join the program each
fall. (The difference is made up of students who join the program at a later time.) The
quality, motivation, and preparation of these students therefore is not dissimilar frorn those
for whom the Princeton course was designed. Math 198 is officially an elective for freshmen.
Its curriculum is the instructor's choice. Since the course under the present discussion, and
its predecessors, is the only version of Math 198 which treats programming graphics
computers, no ambiguity results from referring to it simply as Math 198,

In a class of 15-20 students, a third tend to be freshmen, the others range over all three
remaining years. Typically, five are novices with respect to computer programming, four
are so proficient that they volunteer to help train the novices, and the remainder can
program in at least one language on at least one computer. Occasionally, a freshman is
among the computer proficient, but juniors or seniors who are computer novices are
discouraged from taking the course. The students are usually science or engineering
majors, though there are always one or two from the humanities or the fine arts. There have
never been any students from agriculture, commerce, or the social sciences. Two or three
students are women.

Not surprisingly, all students have had calculus, trigonometry, and analytic geometry,
at least in high school. The majority are concurrently enrolled in a middle level course in



differential equations, linear algebra, geometry, physics, or computer science, so that their
projects are almost invariably related to topics studied in these related courses.

Instruction

The professor and his teaching assistant both meet the students for an average of five
hours a week in lecture and lab. The course carries 3 credits, but the schedule is so arranged
that the lab component is contiguous with the formal instruction. The topics are strongly
modularized so that they can be variously selected and arranged to maximize their
relevancy to the students' current interest and capacity. A 5-10 minute introduction is
followed by a 15-30 minute hands-on tutorial on the computer. Thiscan be in the form of
operating, analyzing, modifying, and experimenting with a pocket program (see below) on
the Apple IIgs. On the Iris it usually means operating an RTICA to perform a particular set
of experiments and recording the outcomes (observations) on a work sheet or in a notebook.

Hardware

The computers used at the high and the low end are standardized. Each student has
access to a fully networked Personal Iris 4D/25TG in the Renaissance Experimental
Laboratory (REL) of the National Center for Supercomputing Applications (NCSA). These
Irises have 24 bit RGB framebuffers with a 24 bit hardware Z-buffer and graphics
accelerators. This configuration suffices for real-time interaction with fully animated,
rendered and lighted scenes containing 1 to 5 separate graphics objects.

Half the class sessions take place in REL, the other half in the Apple Lab. There the
students use 20 independent, 9-year-old Apple Ile computers which have been upgraded
to be a IIgs with (effectively) 4-bit RGB color or 4-bit gray- scale Z-buffer.

In addition, many students own popular micro computers, and the University provides
access to Macintosh and 1BM sites. While these sites are very useful for word processing,
they are uniformly useless for Math 198. Students with computers in their rooms are
permitted (weaker students are encouraged) to structure their projects in a way that
maximizes their using personal equipment for graphics and mathematical algorithms. Of
course, it remains their responsibility make sure that the project can be demonstrated to
the entire class on some computer in a publicly acceisiblf: location.

Software

On the Iris we use a propr'etary but close variant of the Unix operating system, the
MIPS C-compiler, and the standard graphics library supplied by Silicon Graphics. All
students use real-time interactive computer animations (RTICA) written by and for
students in the graduate course I teach in REL, or as projects by previous undergraduates
in Math 198. (An example of such a program is listed and discussed in the last section of
this chapter.)Those with sufficient experience (beginning with Pascal proficiency) are
encouraged to master the rudiments of an editor (vi, emacs, or jot) to try their hand at
programming. For novices in C, Unix, and gl, there is a graduated collection ofprograms
to study and modify. For the more advanced student (a few of whom already have some
experience programming an Iris) there are projects by previous students to study, improve,
and frequently rebuild from scratch.
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For the Apple Ilgs we have a considerable accumulation of student and instructor
developed software, most of it in 65816 machine language, which extends the native
Applesoft BASIC resident in the IIgs ROM. The most popular of these is Sandvig's
gs.ampernew. This contains a large number of graphics primitives which fit into an
ordinary Applesoft program much the same way as calls to the Iris graphics library fit into
a C-program. Much more versatile is Robert Illyes' (1988) Forthcompiler, ISYSFORTH/GS,
which is specifically adapted and optimized for Apple IIgs graphics. Both languages were
developed with the needs of the Apple I ab in mind, and both permit us to use the Apple IIgs
as a simple, understandable "toy-version" of a "grown-up" graphics computer like the Iris.

Applesoft BASIC extended with &-GRAFIX is commonly used for projects by people
who have never programmed mathematics before. Forth is mostly used to tease the last
ounce of performance colt of our Apples, and to introduce certain concepts such as cellular
automata, recursion and object oriented programming in an analytical fashion. In Forth,
the student can reach every corner of the computer and even mess with the machine-stack,
something which it is not recommended they do on Macs, IBMs and Irises.

On their private machines, the students generally program in TURBOPascal and a
variety of C-compilers. A popular project for someone who just acquired an brand new 386
or 486 box with a good but user-hostile graphics card is to write their own high level graphics
library, sometimes with machine-language routines for certain primitives (lines, fills,
rotations, for example). It should be emphasized here that in the instructional part of the
course, geometry is assisted by computer graphics. But, in the projects, it is usually the
other way around.

Content

We have developed a number of different techniques of introducing various topics into
the course. Here we shall report on only two of these, the pocket program for any personal
computer, and an RTICA on the Iris graphics workstation.

Pocket Graphics Programs

These are simple programs that do non-simple things. They also contain working
examples of useful techniques. A pocket program expresses one idea in as economical a way
as possible within a given language. It is a program one carries around in one's mental
pocket, to be produced on demand, and implemented on whatever computer is at hand. It
is primarily a didactic instrument. The dozen or so pocket program in Math 198 first of all
serve to introduce the student to the major themes of the course. Together, they provide the
skeleton on which to hang the concept of computer geometry. Finally, they focus the effort
of learning a new language or mastering a new graphics card by way of something concrete
to translate or implement. Let me illustrate what I inean by describing two of the pocket
programs on adjacent topics.

The Sierpinski Gasket

This is a planar Cantor set obtained by recursively removing the central quarter of a
triangle. Connecting the midpoints of the sides of a triangle decomposes the area into four
congruent triangles similar to the parent triangle. Inflicting this excision toeach of the
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three daughter triangles, and their offspring in turn, leaves a figure whose fractal
dimension is easily demonstrated. Self similarity shows that doubling the side-size of the
Gasket triples the measurable content of the figure. If, by analogy to lines, squares, cubes
and tesseracts, "dimension" is defined to be that power of 2 the content of a figure must be
multiplied by in order for it to equal the content of a similar figure obtained by doubling its
linear scale, theti

1 < d = log2(3) < 2

Here is a curious way of generating a Sierpinski Gasket due to Michael Barnsley. For
the traditional description, see Banchoff (1990, p. 32). Barnsley (1988, p.179) invented it to
illustrate an Iterated Function System. It can be expressed in eight lines of classical BASIC.

10 REM SIERPINSKI
20 X=100:Y=50
30 CLS : REM INIT GRAPHICS
40 FOR I= 0 TO 2:READ XF(I),YF(I):NEXT

50 DATA 0,32, 100,0, 100,63
60 J=INT(31iND(1))
70 X=(X+XF(J))/2:Y=(Y+YF(J))/2

80 PSET (X,Y) : REM PLOT POINT
90 GOTO 60

This program moves a point to a new position which is halfway from its current position
towards a randomly chosen one of three fixed points. This stochasticdynamical system has
a fractal attractor.

This program uses only two graphics primitives: initializing graphics on the Radio
Shack TRs.so Model 100 with the clear-screen commandon line 30, and plotting the point
(X ,Y) on line 80. It is appropriate that the vertices of the triangle be given as an array, line
40, because this simplifies how the choice, line 60, is made each time through the loop. Since
line 40 can be written as

40 READ XF(0), YF(0), XF(1), YF(1), XF(2), YF(2)

it is also a gentle introduction to a counted loop. The compact READ/DATA format is
convenient here to express the triangle as a geometrical object in terms of its display-list.

Even at this basic level the program above invites experimentation. Replacing the fixed
initial position, line 20, by a user INPUT statement, and later by a random choice,
underscores the fact that the gasket is a universal attractor. Altering the number of
vertices, lines 40.50, and the proportion away from 1/2 in line 70, leadsto some remarkable
discoveries. For example, last spring Monica Plisch discovered variants of this iterated
function system, whose attractors were other well known fractal figures, such as Koch's
Snowflake. A small generalization, using a color computer, leads to a surprising variation
discovered spontaneously by many students. It makes an instructive difference whether
one sets the colon to number J on line 75 or on line 85. The former identifies the three sub-
gaskets. The latter, recording the color of the previous choice, gives a visual clue of how
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iterated function systems work in the first place. Barnsley's maple leaf (1988, p.108) is not
too far away at this stage of the tutorial.

On the other hand, on the Iris it is an easy generalization to 3- and 4- dimensional
iterated function systems, which provides a nice motivation to a more formal treatment of
a semigroup of contracting affine transformations.

Pocket Dynamical Systems

The exact number and identity of pocket programs used in any given instance of Math
198 is not fixed. Only their use and purpose remains the same from year to year. A large
collection of concepts, most of them new to the student, are more effectively taught by way
of examples than in a systematic syllabus of abstractions. Training in the vocabulary of
comparative anatomy is not needed to enjoy a visit to the zoo. One needs an intelligent
arrangement of live examples from each of the major zoological classes, together with brief
descriptions that do not neglect the homologies between different species.

More than half of the students in Math 198 major in the traditional (hard) sciences.
Thus the notion of a dynamical system is one of the themes to be developed thoroughly. 7.":::1
Hirsch and Smale (1974, p.159) we favor this definition: "A dynamical system is a way of
describing the passage in time of all points of a given space ...." The Sierpinski Gasket
iterated function system is a kind of dynamical system, albeit a stochastic one. A dynamical
system moves a point to a new position according to a rule which depends only on the
coordinates of the point being moved. In the present case there are three rules to choose
from, and the program uses a generator of pseudo-random numbers to choose which of the
three rules to follow each time. When there is only one rule, one says that the dynamical
system is deterministic. One calls the stream of fractions returned by successive calls to
RND(1) "pseudo-random" because they only seem random to us because we are ignorant of
the algorithm that producc5 them. Of course, this algorithm is designed to mimic a true
random number generator as well as the programmer can manage.

The Sierpinski Gasket is the attractor of this dynamical system. Informally speaking,
this means that it is a set of points towards which each trajectory (or orbit) tends. The
succession of positions taken by a point under the influence of a dynamical system is called
the orbit or trajectory of its original initial position. The attractor should also be an invariant
set, that is, the trajectory of a point in the set never leaves it. Here is a more traditional
example of a dynamical system.

The Lorenz Mask

The next pocket program is also a dynamical system insofar as a rule inside an eternal
loop (lines 60,70, and 80) moves the point (X,Y,Z) initially set on line 10, along a trajectory.
This time, however, the dynamical system is frankly deterministic; there is no call to a
pseudo-random number generator because there is only one rule to choose from.

C:
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5 REM LORENZ
10 X=0.9:Y=0.12=0:CLS
20 READ XO,YO,UX,UY,E,N,D
25 DATA 120,32,1,-1,.05,-50,.02

30 XR =XO-N : XL=X0+N
40 YP=Y0+Y*UY:REM LOOP HERE
50 PSET((L+(X-E*Z)*UX,YP)
55 PSET(XR+(X+E7)*UY,YP)
60 X1=X+10*(Y-X)*D
70 Y1=Y+(28*X-X*Z-Y)*D
80 Z1=Z+(X*Y-13Z/3)*D
90 X=X1:Y=Y1:Z=Z1:GOTO 40

It is a 3-dimensional dynamical system because the point being moved has 3 compo-
nents. This raises the problem of how to represent 3-dimensional data in the two dimensions
of a picture. On a slow computer, with a coarse-grained, monochrome video display, the best
way to do this is by means of stereo- pairs, On faster machines with more advanced graphics
primitives there are other ways of achieving the illusion of 3-dimensional plasticity. Here
is the list in the order of presentation in Math 198: perspective, depth-cueing, motion, z-
buffering, shading.

Stereo-pairs are viewed with the help of devices which insure that your right eye sees
one image, while your left eye sees an image of the same scene from a slightly different
angle. Our visual system is very forgiving. It is not necessary to compute these two views
very accurately, which would slow things down even more. Here we use a small shear, lines
50 and 55, to ar, proximate binocular vision. A shear is a distortion which moves a rectangle
to a parallelogram without changing its base or altitude. Think of a stack of playing cards
pushed uniformly to one side.

In the absence of helpful optical devices it is easier to cross your eyes. So, shift the right-

eyed view to the left, and vice versa. Cross your eyes by focusing at an object, e.g. pencil
tip, roughly halfway from your nose to the screen. Wait until you see three rather than four
fuzzy images. Then wait until the middle one comes into sharp focus. On the printed page,
the images are smaller and closer together. Here the view for the right eye is on the right.
These can be viewed unaided by focusing your eyes at infinity (not crossed). One way of
achieving this is to place your nose right up to the image until your eyes are relaxed
(unconverged, unfocused). Then move the page back slowly until the fused, 3-D image
jumps into focus. To reverse right with left in the pmgram, change the sign of the nose offset,
N, or the eye-shear fraction, E, but not both.

The shape you see developing is called the Lorenz Mask and it is a very popular example
of a strange attractor. Strictly 2-dimensional dynamical systems do not need the complica-
tion of ctereo-viewing. On the other hand, they don't have strange attractors. The Lorenz
is also a favorite character in Nonlinear Mechanics because the rule that reads the velocity
at a point is not a linear function of the coordinates of the point.

The iteration loop begins at line 40. This program uses both world and screen
coordinates. On line 40, the vertical screen coordinate, YP is obtained by adding the fraction
Y of the vertical unit UY to the vertical origin YO. This interprets the world coordinate Y
as a fraction (proper and improper) of the fixed vertical displacement. It is an example of
the axonometric projection from 3 to 2 space. Such a projection may be described informally
as follows. Draw three line segments in the picture plane, the x,y,z-axes, from a common
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point, the origin. The axonometric image of a point (a,b,c) in 3-space is located at the end
of a path that begins at the origin 0, moves along the x-axis to point A forwhich the segment
OA has the ratio a : 1 to the axis, then moves parallel to the y-axis a ratio b : 1, then aratio
c : 1 parallel to the z-axis.

In lines 50,55, the horizontal displacement from the left-origin, respectively right-
origin, is computed. Starting from the true displacement, X, as seen by the cyclopean eye
(in the middle of your forehead), which is the same for both eyes at the point you are looking
at, it becomes progressively greater as the point recedes into the background, ie., as the z-

coordinate becomes greater.
In lines 60-80, the world point (X,Y,Z) is moved the small fraction D along a

displacement, the velocity vector, which itself depends on the current position. The reason
this simplest of all numerical integration techniques is perfectly adequate here is that the
dynamical system has a strong attractor. Even if at each step the computed point moves to
another, nearby trajectory, it will converge to the attractor anyway.

The Third Dimension

Effective management of the depth illusion is a major theme in Math 198 since one
aspect of the course is to "perceive" 4-dimensional reality in its 3-dimensional "shadows."
When only one method is used to indicate depth, any momentary ambiguity spoils the
illusion, blinking while looking at a Necker cube, for example. So a second method, depth -
cueing for example, is good insurance. This means that points further back are drawn more
dimly than those in front. The Apple IIgs has 4-bit color pixels; that is, a pixel may be
assigned one of 16 shades of gray proportional to the distance of the point from the viewer.
Cary Sandvig's graphics package has a number of pixel-operations built into it. A pixel-
operation is simply the ability of storing the result of a logical operation between the color
number about to be assigned to a pixel andthe number that is already there. Standard point
plotters just overwrite the old pixel. The pixel function that replaces two numbers by their
maximum is the one used here to simulate depth-cueing. Another pixel function, the
exclusive-or function, is used for simulating separate pixel planes, for example a cursorthat
can pass through a picture without alteration.

The next, mechanically more demanding object, is a depth-cued line. This is useful to
improve the legibility of a rotating cube, or hypercube. For this we switch to ISYSForth
because it compiles code that is fast enough to rotate simple wire-frames composed of user-
built line-segments. That is, the student learning the Bresenham line drawing algorithm
can implement it in Forth together with personalized pixel operations. Very simple
polygonal surfaces can be rendered in a way that simulates Z-buffering by programming
scan-lines that fill triangles. The pixeloperations make it possible to program a limitedbut
recognizable texture map simulation.

Most Math 198 students are eager to skip over these details and move to the Iris where
such graphics are library primitives. Son e, however, take the opportunity to become more

deeply involved with graphics primitives and, for their class project, produced an ML and

C based graphics package for their own personal 386 based home computers.
This is as good a place as any to defend Math 198 against the charge of being a course

which teaches computer engineering without a license. There is mathematics in every-
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thing, and the study of anything sufficiently interesting to bright students becomesmathematics when the epistemological approach itself is analytical rather than merelypractical and goal oriented.

Hypergraphics on the Iris
At this point in the course interest and attention begin to bifurcate. Cellular automataand Mandelbrot sets can still be done on the Apples using the (by now familiar) languagesof &-GRAFIX, CSL and ISYSForth. Some students now experiment with possible projectsusing these methods. All students migrate to the Iris lab for a 3-week introduction togeometrical graphics. We next discuss the source code for illiSnail This example is typicalof the RTICAs we use for anything from a 30 minute hands-on demo to a two week summerworkshop for math teachers.

The Curriculum

In the first lab session the students learn to control the animation. For illiSnail thisentails flying through a Mains band so stretched that its boundarylies in a plane. It looksvaguely snail-like. I first saw a wire mesh model of this surfacehanging from the ceilingof Bernard Morin's office in Strasbourg. According to Larry Siebenmann (1982) theengineer Michel Pintard made a wire model like this in the 1930s. Pintard had studiedtopology with Hadamard. I was deeply impressed by the beautiful, computer generated 16mm film of this surface made by Dan Asimov and Doug Lerner (1984) at LawrenceLivermore National Laboratory with a Cray -1 supercomputer. But I hadto wait for the Iris4D to write a real-time, interactive computer animation. In fact, this surface is aninteresting example of a significant class of ruled, minimal surfaces in spaces with ellipticgeometry, such as the 3-sphere in 4space. The RTICAis capable ofgeneratingseveral othersignificant surfaces, such as Steiner's Roman Surface the Clifford Torus and Lawson'sMinimalKleinbottle, a portion of whichconstitutes Brehm's Trefoil Knotbox. The exercisesare listed at the end of the chapter. (See also Color Prints 11 and 12.)In the second session, students learn the geometry of these surfaces and theirhomotopies. The third session is a survey of the internal operation of theprogram. It servesas an introduction to geometric computer graphics. In the fourth and lastcommon session,all students use the RTICA (or minor modifications of it) to produce a brief (1.2 minute)animation by recording their manipulations in a script file. This is the "lab-report"recording the results of their exploration into hypergraphics.

The Program

The program listed here is actually a condensation into a single file of several RTICAsof graded difficulty and sophistication. It was designedon a Personal Iris 4D/25G using Irix3.3.1. It was recomp iled on some other systems using Irix 4.0 toincrease our confidence that,with some minor tinkering, this code will run on any Iris. There are still a few bugs in it,only some of whichare intentional It is an old Navajo custom to weave an error into everyblanket to forestall the temptation to imagine the work to be perfect.
For the sake of brevity we omitted several useful and instructivefeatures, in particularChris Hartman's script writer and object maker. Both produce textfiles. An illiScript

t.)
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captures the key-presses and so recreates the animation by reading it back into the same
RTICA. An illiObject is the display list for a particular stage of a hornotopy of the surface.
It is intended to be used by a more elaborate and sophisticated surface viewing program.
The reader may obtain the source code for illiSnail from the author. Videotapes showing
solutions to the exercises below, and other experiments, may be obtained from the NCSA
(Francis, Chappell, & Hartman, 1994).

This program is written in "vanilla-C," using only a few of the most useful functions in
the Iris graphics library. No attempt was made to write the program in exemplary C. Nor
does its style conform to standard rules of "pretty printing." In Math 198 we treat programs
like proofs, in which the visual space occupied by a symbol is roughly proportional to its
mathematical importance. The program is meant to be studied and "unpacked" slowly
before it is modified or rewritten. In particular, students are encouraged to practice using
the editor of their choice on the Iris to rewrite the code in their favorite style. One time, a
student translated a C-program into Fortran in order to understand it. Ironically, it had
been translated from Fortran to C for the purpose of teaching it to the class. Common
programming problems often have more than one solution in C. For any given problem, the
absolutely optimal or most elegant solutions was generally not used, mainly because I
probably don't know it. The student is certainly welcome to teach the teacher a trick or two.
So, without further apologies, here is a print-out of the code which I shall document with
just sufficient detail to be of profit to anyone with access to an Iris computer with the
standard ANSI-C compiler and the shared libraries in its directories.

Fra%slo, Slen 2naplseil and Chris Hartrran
Xatnerasiss 2epart:rent and NCSA /
:2, l'49: Boars' sf Tristees */

/* Unversity of l.iinois, l:rtana, 211inois 61801 */
*,

iescendant of knottsx.s, c'ibevert.:
/* as version 11/2l.?: */
$1,ncl.-de 71.n, ;* grapnics library *I

devire.h> ,* devise library */
*:ns:ude kmatn.h: natheraticai licrary *;

*define
define
*define
*define
*define
*define
*define
define
*define
*define
*define
*define
*define
*define
*define
*define

XAX
m:N
ABS (,,
D3

S't'
FOR'a,r,c,
CF'K
SCAKO,,
T.2.3GLE (K, f
CFSH:FT
?FESS A,b
PFESS A, c,

LABEL x,y,W,-)
DCT (aa,br)
NRXIaa

(,x<y)?y:x)

HA<C,)?-x:x)
X 1,218C.

ss(t*DG)
fsin(t*DG)
for;ab;a<c:a-)
f(getbutton(K))
while(getbutton(K))
2F(K)1.*1-f; SOAK(K);
f(getbutton(LEFTSHIFTKEY):Igettutton(RIGHTSKiFTKEY))
7(F)2FSHIFTA;else(b;H
:7,-KlY21,'SHIFT(A;else!b;):SOAK(K);:
sprintf(phrase,w,u); cmov2(x,y); cnarstr(phrame)
) aa;0]bb[0 ]aa1].bb:1]aa[2]*bb21)
fscrt(DCT(aa,aa))

7rnd, rndr, cute, thick, win, fly, binoc, rftsq, gap, brt,
hilhthfdthta0,tal,dta,:dta,fdta.

u:[4; :4: a'. ° '4;

alfa,beta,IsTa,artn,pwr,m4,:s,nose, mysiz,focal,speed,far
sflar pnraserC!,%,:

vq8, :?:, cibe TAin ,

onearz(.1:
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dePaultsc):in: ii,:j; !. in tne key of Z
it surface patch

alfa 2; beta 1: lima').; gap
th0 90 : thl 269: cdth19; fdth. 6;
ta0 = 90 tal 270; cdta=18; fdta 6;

dta :ta; dth = roltn;
it flags

wintt2; msg=1; thick-4; binoc0;
flying t

maus.:1; spee-.O4: fly-0: mysiz-.02, ftcal-2.,
/. rendering .

grnd l; trt 25: arb .2; pwr= 16.; nose. 06;
reset the affine matrix .!

a- p1 Inc tbject int: the background
aff;2::::. -4.2;

/* r---'f=- ant deptnoueing parameters ./
:near= tfar = 0x7''."'

CeFa...lts') if ytu want anther set of them .!

argmen's,arct,argv) inn arc: char ..argv; /* Pat Hanzahan, 1999 .!
;.hile--argoH --arg-.... :::;argv0H):--'-') switch argv:0::1:)
ta:e "w': win - attilargv; argv--;argo--;break;
case '7': grnd attilargv:1:); a:;:--; a.,.. ;break;
case 'z'; alfa = atti(argv:::); /* Moebius band a-2,b=1 .,

zeta - attar-.Z :); ,.. r-,"ord torus 2 2 .!

argv -- 2: arg: -. 2;break; /. Knotbox 2 3 .!

1.:a;l: = attfargv:::); /* light source direction "!
l. 0. 1. for headlight .!

- attfiargv:2:); /. 1. 2. 3. Is default ./

arzy -- 3:ar.7c -- 7:treak;
:fmmandline art, ad '''-'-- -imd: the syntax

zaint,Imn,ttg.tat;f1:at 1:/z; int dtg,cat,( int fr,gg,rb; float szet;
7: -CC;; Hartman, 1991 .!

:f) 64;
tc

' M.,4X)Imz,ambH.
spe:mm:N25±,crtet - z.r - '.'n ;); .'t Ray :daszak,
rr MAX(Imrwrr, stet.
gg MAX).-.3;;, spec::
tt m.AX;Imz.cc, spec);

s,rfvv,tn,ta; flzat vv:.?.; Int tn,ta:Ifloat xx,yy,tz,..,al;
C,Ilma; - SC.ima).2ta); limatonit homotcpy ti

aa " 2.:alfa.tn).2.(ta)tli; Sudanese Moebius Band *,
S,alfattn).Cta).11; r. Sue Goodman & tan Asimov, ca
Ctetatth)*Staltli; Larry Siebenmann, :992

- S(tetawth).Sta).11; 0 Blaine Lawson, 1970 "./

a: - 7071.(ax-ww); nearly polar projection ",
w. =
vv:C; = xl.'/(10+9...);
v:1:

dra.s.;rf()!int CC, ta, dcg; float Vv'], nn:3, 1mb;
ftr(tn,tn0; th < hl.;

tgztmeshl:
dog = 255'Yth-thD)/thl-th0); opack( paIntL9,dcg, 0));
surf(vo,tn,taC); v3.f.vo); !* first vertex
surflaa,th-tdth-gap,taC): v3fiaa): '" first rung ./

ftr(ta ta0.dta; Ca (. Cal: to dta)
surf;vv,th,ta ): nzrmal on vc as vv
nn[2 :-(aa:::-vv:::).'vo12)-vv;21)-(aa121-vv:2))*(v.(1:-vv:1;;;
tn[1]'(aa:2:-vv)*(vo:01-qv(0))-(aa0)-vv[01).(vnn:2:.;aa:0-vv(0]).(vo::1-vv[1))-(aa:11-vv(11).!v 0:-v[Z):
1mb 30T1u,nnliNRM(nn); if(lmb<0.)1mt - -1mb;
,.!packi painYlmt, dog,256"fna-ta0)/(tal-ta0)));

1 )-1 gap,ta); '.'3f as)

BEST COPY AVAILABLE
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endtmesh:):

trawnocp(ta,dt1int ta,tt int tn; fldat vv:2:;
cpac(l:x44ffff)7
bgntmesh();

fcr(th=tn3;th<thl-ttn; th dth),
surfivv,th,ta I;v3f(vv);surftvv,th,ta,-dt);v2f(vv;;

endtmesh():

trawcude Int Li: .. Steve Kcmm.rusch, :984
1P5t,range;1'7.:,1:0,:0,252,255,255znpar,,:3r).
:inewitth'tnickH deptn-7 c:1,;
tgnline();

endline.):
.-zeptncue(3,:

t"ws7-ars', 1n7- f:oat. /* Glp-- Cnappell, 191
pushmatrixil; pushmatrixt). 2 copies of the prc:ector
lcaamatrix(aff); getmatrixtmp':

/*pure ra
p..apmatri:/.11; muitmetrixt:rp`:
srandcm;1,: the stars Pcn't change, hence the 1 ./
cdnpcLntj: cpac<I:x'

vv:';: * rannm()/ifloat).40202CC:-1.:. v.2.t;v71:
endpoint;,:
popmatri.C); /- tne way it was before '/

messages;; ! /. text :ntz,rmaticn as heads-up display *,

if;'hinDt), c.;racn). ccack.lx3888);
dpack,;:tt'2"""'

pe Infa; (Cloarse (F 7.7,0 ('.;),ap, Id ",gap;
'B;inoc >.> 'o (Q)..lpe (":S( %;) ", fly);

.:CA by George Fr.Ancis, Illinois, 199Z",win):
-.0 key inverts tne action, i,suaily.",win);

freouent1y kevs
.35,"(M)a;..s 54g",maus);

t.2g",far;:
LAFEli-.9, .'7E,"pun.. near clipper (i)r %.2;", myslc.fc::a1).

cal !acts: %.2g",focai) :
s(:)ze 1.2g",mysizi;

;:,"(S)peet %g",speed);
AL(-.9, :77.,"(L)imacon %;",:ima);

J. rarely used Pcntrol keys ./
LABEL(-.2, .::,"(fl)amhient ,sg",arlo);
lAE(-.4, %g",pwr);
LABEL(-.2., .%2,"(NIose 5g",n7.se):

ft>Z %d",th:;
LABEL'.25, "st",th.1).
LAPEl'.5 , ic",:a0>;

,st",tall;

kevccard() keys ./
TCGGLE(PF:NTSCREENKEY,msg: messages ant cursor vanish
TCGGLECRKEY,rnts) /* surface vanishes
TOGGLE(QKEY,:.:ze) stick cute appears 0/
TOGGLE(SPACZKEY,fly) fly.nq mode */
PRES_SiSKE'f,speed speed -- .CI) J. accelerat
PRESSIZKEY, OeFaults(), deraults()) /* zap changes ./
?PI:SSC:KEY, mysiz i :.1, mysiz 1.1) rescale the world
PRESS(CKEY, focal 1.1 , focal /0. :.1) telephoto ./
rRESSIPKEY, far .* 1.;1 , far 1.2.1) /. bewPre of this */
PRESS(MKEY, taus , maus .21 ) /. gen,:er, kinder mouse./
PinS_G(HKEY, r'''-. 36> 1. cross your eyPs)'R>3 :N0, nnse .C1 , nc1,5 ) parallax adtuste: '
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PRES S(CKE'r, dtn-c:a
, dthwcdtn: dta cdta) /. coarser mesh ./PRIS-SFKEY, dth *M.,W1,--dth);dta*MAX(1,--dta), dth"fdth;citawfdta)PRESI(L(EY, lima -* :., lima .ow 1. ) /. timacons of Pascal homotcpyPRES S(GKEY, gap-0 , gao*K:N;dth,gap.1)) between the ribbons ./PREST(F:KEY, amn - Cl,. am= - .01 ) /. ambient floorPRES 51FE', car * 1. , own o* 2. ) 0, specular ramp ./

PREST(F5K.V.f, thC 'o.:N(*-th0,thl) , th0--, /. source patch ./PRESS(F6)<C. nt * MAX(--thl,thO)
PRESS(F7KSY, ta0 * M:14)--tat, tal) , ta0--)
PRESSiF8K.F.X, tat MAX(--tal,ta0) , cat--)

mainlargc,argv) int ac-c; char ..argv; int te=p;/* Kronecker celta ttr the identity /

Steve Ktrurrbsn's by Gray-code

ie Load bp deFab.:.ts ./
OeFabts,),
use Hanrahan's aro1.1.mentcr
arg'.=ents:aror,arg",;

normaLtre 1:4nt the :ion.' .;
terrpNY,Y1Jx;; FOR,3,3)

/ ten;
deolde on wtntow style

switcr. .1n)
case :,, nreak;
'73Se C. crefr'.5i.ttnY:,54'i,' creax.;
case 2: break;

:pen 7.ne ..d.nbcws
,7.nspen%::SnaiL"I;

ac'..:t:ecbtre: P".3Brrode(): coohfig();
i.setertn /.--ris may cc the derault
zfonc.:r;r7.F 1ESS); /* rotuffer reversed by GPZATE?

s.eep _:ix 4. fro; messing op ycor wrndcws
:

e.:,erna: :top

- dg .1.0S,dx),:x
;etvalbattr,?=SS.::, oy '0.

f:y tranr
r.rdxmaus,'Y'

,rPE.P25HTM000=, ro!.(-1,'r.))
74,FEZS LEFTMC'.:ZE, rtt( :tr.( 1,'71')I

P03 M:::IZMOCJCO,
ir

ranslate (0,0, -speed) , ansiare sPee.d) :m-ltmatrixtaff), getmatrixlaff):
rco,ate light source ./

FOR ( t. , , 3) i r ) -0 FOP ( 0, 71 of I 'craw a frame ./
:packl,grnenx """" *0); c:.ear!); st:eari);

if(boson) viewport(?,,640,256,168); /' rignt eye is:rcss-eyed shifted stereoscope got 2.2.0.92 with prc flyro
window)-mysiz*1.25,mysis.1.25,-mysiz,mysiz,mysic.fccai,far),
drawstars()
translate(-ncse,0,0); multmatrix(aff).
drawhocp(ta(C,-:), drawhoop(ta1,2):
ifirndr)drawsi,rf(), if(cube)drawcobe(),

It(bincc) (
viewport(640,1290,256,768); left eve is rignt
window-mysrc.1.25,mysiz.1.25,-mysiz,mysiz,mysir.fccal,tar),
drawstars();
translate( nose,0,)), multmatrixiaff);
drawhoopSta3,-2), drawhoop(al, 2):
if(rndr)drawsurfil, if(cuce)drawcobe():,

if(mag)mess,ges!);
swapbuffers();
reshanovrewpcs-.,).

Cr,') .11.e loot /* !

252
4: ,Z)
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#include, #define, and variables.

The program is entirely self-contained, up to calling functions in the graphics, device
and mathematical libraries. Next come a series of abbreviations for the compiler which
improve the readability of the source code. The trig function macros, present here merely
for notational convenience, are an occasion for discussing how to optimize real-time
animations. There are still many graphics computers slower than an Iris where consider-
able improvement in real-time performance can be achieved by tabulating the values of
transcendental functions.

Fnr many sound but admittedly controversial reasons, we depart from standard
programming practice in the matter of variable types, and other customs. The extra
precision of "long" and "double" is rarely needed, and the names "int" and "float" are more
mnemonic anyway. This is not, however, the place to defend or promote these departures.
A reader who is offended by this rough but practical style of writing C is welcome toblue
pencil my code as if it were a school-boy's effort.

deFault(), arguments()

Almost all variables which arc or may someday be, interactively manipulated, or which
are, or may be, used by more than one independent subroutine, are global. Their default
values L:e assigned in a subroutine, which itself can be called repeatedly by the user during
execution. There is a second set of defaults which the student can use to customize his own
version of illiSnail.

The RTICA uses an exceedingly simple algorithm for reading arguments from the
command line. A one letter flag announces new default value(s) for the desired parameter
set. The student n easily add and subtract cases in the switch block without rebuilding
the subroutine. Many years ago, when I explained to Pat Hanrahan that my students
cannot spend much effort on learning input/output syntax in C, he designed this routine
for them.

paint()

The surfaces the RTI CA generates are all painted and lighted. That means two things.
The color of a vertex is a geometrical attribute, for example a function of the surface
parameters. The corresponding values of red, green and blue are attenuated proportional
to the Lambert lighting model (Francis, 1987, pp. 61-64). This needs only the computation
of the cosine between the normal direction and the direction of the light source. At the dim
end, we clamp this attenuation at whatcorresponds to an "ambient" leveL Atthe bright en d,
we ramp all three values steeply to purewhite to give the illusion of a specular region. Later,
at the cost of one 3x3 matrix multiplication per frame, we move the light source so that the
specular high-light appears to be stationary as a surface rotates about some axis. This
simplification of the standard Phong lighting model evolved from one which Ray Idaszak
developed for the Etruscan Venus Project (Francis, 1987, Appendix). It is easy to explain
and to apply, and it works quite well, especially for one-sided surfaces. Its merits and
demerits are discussed elsewhere (Francis, 1991; Idaszak, 1988).
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Chris Hartman mixed the present color palette in rich pastels suitable for videotaping.
The meaning of the colors painted on the surface is quickly discovered once the user
manipulates illiSnail to draw a fine-grained rectangular patch (see Exercise 1.1). In this
subroutine the "dog" and "cat" chase each other through a color gamut as they map the
surface parameter values into a mixture of red, green, and blue.

surf(vv,th,ta)

This function returns the position of the mapping.
v = f (0, t)

For another surface, the programmer need only change this function, and adjust the
default parameter values. This code segment becomes less of a mystery once it is
transformed into standard mathematical notation as follows.

We first map a it x it sized rectangle to 4-space, where it occupies a + etch on one of the
real algebraic, geodesically ruled, minimal, surfaces immersed in the 3-sphere, as described
by Lawson (1970).

rcos(a0) 0

y sin(o.0) 0
cos T + sin

0 cos(130)

[w.1 L 0 j Lsin(00)]

We rotate the 3-sphere in the xw-plane,

X - W

x+ w

and finally project this to 3-space from a point ju. outside the 3-sphere to avoid accidental
zero-division.

7x

10+9w
7v

10+9w
7z

. 10 9w_

t ft
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Multiplying [x,y,z,w] by the factor (cos ()-sin (X)cos( 1) ) before projection, has the effect of
moving the semicircular rwires, for X = 0 to 90', through the Liznacons of Pascal, to full
circles of half the diameter and all passing through the origin.

drawsurf(), drawhoop()

The surface itself is drawn as a succession of ribbons with a greater or smaller gap
between them. Each ribbon, parametrized by r uses the triangular mesh function of the
Iris graphics library. The gap is controlled by the G-key, the stepsize of 0 and ris controlled
by the F-key and the C-key, which switch between a fine and a coarse mesh. The shifted
F-key makes the mesh finer, the shifted C-key makes it coarser. The R-key toggles the
rendered surface on and off. It is intended to switch to the wire-frame, a feature students
are invited to install as an exercise. The yellow 0-ribbon, generated by the drawhoopO
routine, is neither painted nor lighted to really illustrate the tmesh0 syntax. The RGB-color
primitive cpack(Oxbbeedd) employs a hexadecimal encryption of the 3 color values. In this
example, it yields bb=11*16+11=187 blue, ee=238 green, and dd=221 red, in that order.

drawcubeO, drawstarsO

The "unit" cube is in this RTICA for reference (its inside radius is 1) and to train the
user in cross-eyed binocular viewing of the stereo images. The parameters of the binoculars
can be interactively adjusted, and it is easier to use the familiar line-drawn cube than the
unfamiliar surfaces to check the effect of such changes.

The cube itself is drawn as one continuous polygon following a vertex list. Recall that
the hypercube is a significant actor in Math 198. Steve Kommrush, a student in my very
first computer based edition of the course, left us with a beautifully simple algorithm for
drawing the hypercube. As an elementary exercise in modifying illiSnail, the student is
invited to turn the 3-cube into a 4-cube which can be rotated in all 6 planes, and thus
implement Tom Banchoffs (1977) classic visualization of the hypercube.

Originally Glenn Chappell's stars were an amusing experiment, but their presence
really helps keep one's sense of position while navigating the labyrinthine interior of the
surfaces.

messages(), keyboard()

The lit subroutine displays messages on the screen, for example the current value of
parameters, and which keys to press to change them. The key-presses are interpreted by
the next subroutine in one of three styles. Togglers alternate between two states. Cyclers
are more sophisticated versions of this and operate like the buttons on a digital wristwatch.
As students run out of keys to rogram, cyclers become popular despite their confusing
logic. Since the keyboard is meant to be read between each frame, pressing a key can be
interpreted incrementally as an "accelerator." The shifted key reverses the direction of
change in the parameter. In some cases the changes are naturally big steps and one wants
to force the user to think between presses. For this purpose we "soak" the key, so that it must
be let up to take effect.

There are, of course, many other ways of controlling an RTICA; pull-down menus with
sliders and buttons are the most popular. I invite all of my students to compare the effort
and reward of a heads-up display with two handed pilotry favored by flight-simulators to
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the alternative of controlling everything with the mouse and having verbose menus
interrupt the animation. Soon most agree that ten-fingered users quickly learn do many
things automatically and together, without a need for distracting writing in the field of
view. The messages, and even the mouse cursor, can be turned off with the function key
marked "Print Screen." I often joke with ardent defenders of pull-down menus and slider-
bars that I would not care to be a passenger in a commercial jet flown by a pilot clicking a
mouse to select control values from a pull-down menu.

main(argc, orgy)

This brings us to the main block of theprogram which consists of a setup sequence and
an eternal loop from which one can escape with the escape key. Students are initially
discouraged from changing this part of the program because it contains the hardware
specific calls in the correct order. However, an understanding of its operation in general
terms helps one to perform the experiments and to interpret the sometimes baffling
outcomes.

In the setup, the identity matrix is built with a Kronecker delta defined in terms of the
ternary operator of C. This prepares the student for its use in Steve Kommru sh's very clever
construction of the unit cube. Next, the default values are assigned to the parameters, and
perhaps modified by Hanrahan's routine. For example, a new light source, perhaps a
headlight for the flier, can be given on the command line. Its unit direction is calculated by
the program. The student might build in several lights, or a local light source as an exercise.

The current program is simplified to work properly only with a full Iris screen of size
1280x1024. Indeed, it must be suitably adjusted to workon the small Indigo screen. The
command line choice of three window styles is a start in this adjustment. On the other hand,
if a smaller window is needed without recompiling, execute this Unix line:

iris% illiSnail--w 0

Now we are in the loop. The mouse-syntax in this RTICA is an adaptation of that
invented by Glenn Chappell in his mush more sophisticated geometrical viewingprogram,
illiFly. The intention there as here is to give the illusion of piloting a small space capsule
in and around a mysterious topological object in emptyspace. The capsule can move forward
and backward, and orbit sideways around the object. The porthole can change its focal
length for wide angle or narrow angle viewing, and the entire world can change its apparent
size relative to the capsule. All this is actually a plausible rationalization of the effects one
can achieve using the Iris graphics library primitive for perspective projection.

At the heart of every RTICA is some way of coupling the motion of the mouse with
motion in a subgroup of geometric transformation of the world coordinates. The one used
here has evolved through many years of student and instructor experimentation, and is one
of several we encourage new students to improve upon. Once all the function specific to the
Iris graphics library are translated into standard multilinear algebra, the present version
can be shown to be both obvious and nearly optimal However, we cannot do that here. A
definitive exposition of these matters is in preparation (Francis, Chappell, & Hartman, 1994).

In broad terms then, a displacement of the mouse from the center of the screen (marked
by a gray bullseye) is translated into a small modification of an affine transformation of 3-
space. Recall that the Iris ge ,metry pipeline operates as if the homogeneous coordinates of
each vertex are multiplied by a succession of 4x4 matrices. At any given moment, this
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succession may be associated into a product of just two matrices. The first represents a
member of the 3-dimensional affme group, which is a semi-direct product of GL(3,R) and
R3. (For practical purposes, think of the Euclidean group of rotations and translations.)

The second matrix represents a projective transformation which expresses linear
perspective. The Iris graphics library takes a resolutely pre-Copernican view, placing the
eye at the origin of the world coordinate system, and looking "backwards" into the negative
z-direction. A rectangular window is placed a positive distance from the eye, and everything
visible is clipped to lie in the frustum of a cone between the projection plane and a far
clipping plane. There are two keys in illiSnail which control the projection matrix. The 0
key changes the focal length of the view. You may think of a zoom lens. Increasing the focal
parameter has a telephoto effect; decreasingsimulates a wide angle lens. The latter is useful
for viewing the inside of the tunnels formed by the surfaces.

In order to fly through these tunnels one has to eliminate the effect of the frontal
clipping plane. The I-key does this without changing the linear perspective or the area
occupied by the object on the screen. On the other hand, pressing the 0-key and the I-key
together, changes only the scale of the viewing window, without changing how near to the
eye or the object the clipping plane is located. As you fly closer to an object, it ispossible with
these controls to slice frontal windows into the surface for looking in, or shrinking your
apparent size so as to fly around inside.

The two states of the rotor, toggled by the space-barand echoed on the message board,
are called "flying" and "orbiting." In the former state, the axis of rotation is through the
observer. Thus the space pod moves to where the mouse cursor is pointing. In the latter,
it passes through the object and it appears to turn in the direction of the mouse movement
as is customary for trackball rotors (Francis & Kauffman, 1994; Hanson, 1992). Press the
middle mouse button to move forward at the speed adjusted by the S-key. Shift-mouse
reverses the direction, while shift -S decreases the velocity. The sensitivity of the mouse can
be changed with the M-key.

Binocular vision is induced, approximately, by shifting the entire scene to one side and
the other before projection. For cross-eyed viewing, toggle the B-key: The right image is sent
to the left viewport and vice versa. The "nose" parameter, on N-key, adjusts the binocular
parallax, so that a negative value produces stereopairs for parallel viewing. Stereopairs
holp the user to discriminate certain surface features more accurately, and to discover
programming errors during code modifications. We do not recommend crossing your eyes
for any length of time.

Exercise 1.1

Here are 3 easy experiments to perform on the 3 surfaces in illiSnail. The F5F8 keys
change the range of the two surface parameters. Press the shift-key and the F7, F8 pair
simultaneously to retract the Mobius band to its more familiar position of a ribbon with h alf-
a-twist in it. Note how pressing the F and C keys switches from a fine to a coarse grained
triangulation of the surface. The shifted F-key refines the triangulation, the shifted C-key
coarsens it. Be aware that key presses are not buffered in a queue. All keys arepolled after
each frame. So if a frame takes a while, the key action is slow. In this way, the visible effect
of an action is the confirmation that a key has been pressed, and no inexplicable sequence
of queued up actions can happen when no keys are pressed. Retracting the other surface
parameter (shift F5 F6) yields a rectangular patch which is good for studying the color
scheme.
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Exercise 1.2

Now press all four keys, F5-8,torestore the Mobius band and stretch it out so that itsborder becomes a plane circle and the "diameters" are again semicircles. If you are in ahurry, the Z-key zaps all changes and restores the original settings. Hold the L-key downand watch these semicircles close to full circles. The border of the Mtibius band shrinks toa point, producing the cross-cap model of the real projective plane (Banchoff, 1978; Francis,1987, Ch. 5). The G-key controls the width of a gap between successive meridional stripsthat make up the surface. Shift-G zeros the gap. Note how these ribbons are Gouraudshaded in one direction, butnot the other. This improves binocular convergence as well assimplifying the code.

Exercise 1.3

For the third experiment provide the flier with a "headlight" by executing

iris% illiSnaii-u 0.0 0.0 3.0

from the Unix command line. Next, rotate the snail, switch to flying mode (space-bar). Tryto. y through the twisting tunnelwithout sliding through the walls.Once inside the snailshell, you may wish to slow-down (S-key) and widen your field of view (0-key). Release themouse button to stand still and look around.

Exercise 2

Now switch surfaces.

iris% illiSnail-p 2 2-u 1. 2. 10.

This yields a (nearly) stereographic projection of the Clifford Torus from the round 3-sphere to flat 3-space. Repeating the first experiment demonstrates how the torus may beregarded as a closed, two-sided ribbonwith one twist in it, stretched out until the edges cometogether along a circle. Flying through both holes of a torus is predictably easy. Exploringthe limaconic homotopy meaningfully here is more of a challenge. Note that Hanrahan'ssubroutine can changemore than one case of default parameters. Weinstalled "headlights"too.

Exercise 3

iris% illiSnail-p 2 3

Thermal surface is the most difficult to understand. The first experiment applied to thissurface shows how a Mobius band spanning a (yellow) trefoil knot has3 half twists. Bendingthe knot so as to form a triple-circle (think of the knots that gardenhoses tend to form) brings3 sheets of the surface together along the same curve. This 2-dimensional cell complex isa smooth realization of what Ulrich Brehm (1991) calls a knotbox. Ifyou succeed in flyingthrough this object, your trajectory will be a trefoil knot. A reader initiated into thetopological mysteries of knot complements will recognize this complex as a standard spineof the complement of the trefoil knot in the 3-sphere.
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Thermal surface is the most difficult to understand. The first experiment applied to thissurface shows how a Mobius band spanning a (yellow) trefoil knot has3 half twists. Bendingthe knot so as to form a triple-circle (think of the knots that gardenhoses tend to form) brings3 sheets of the surface together along the same curve. This 2-dimensional cell complex isa smooth realization of what Ulrich Brehm (1991) calls a knotbox. Ifyou succeed in flyingthrough this object, your trajectory will be a trefoil knot. A reader initiated into thetopological mysteries of knot complements will recognize this complex as a standard spineof the complement of the trefoil knot in the 3-sphere.
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Bonus Exercise

A rewarding programming exercise would be to enable the user to control the values
of the a and13 parameters interactively, say on A and B keys. This way one can observe the
twisting of the band and the transitions between these three surfaces (and many other
surfaces) more conveniently.

The software discussed here and documentation for running on your own Silicon
Graphics computer is available through anonymous ftp from the author
(gfrancisgmath.uiuc.edu) by executing

iris% ftp 128.174.111.12
and logging in as anonymous.
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