
In Place of an Introduction∗

George Francis

February 3, 2001

1 illiView
This edition of the
notes
has been edited for
Math 428, 1997.
Marginalia, such as
this, provide addi-
tional guidance in
anticipation of a fu-
ture revision. An
online distribution
in the form of .dvi
files is here made,
28 August 1998.

The term rtica, short for real-time interactive computer animator,1 is sim-
ply a descriptive name for what computer graphics programmers build for
themselves in the course of their work. It is the harness with which they break
some bronco hardware or tame some shrewish software library. It might be
the workbench on which to assemble an elaborate graphics application; or
it could be the graphics package itself, if that is what is destined for the
marketplace. An rtica is shared with our students and collaborators; it’s
merged with other software; it is abandoned and taken up again at a more
propitious time when better hardware or networking becomes available.

The illiView collection of rticas grew out of my own decade long love-
affair with the generations of Silicon Graphics Iris workstations. It took a
new turn in 1988, when SGI graciously donated a classroom of 4D/25TGs,
the Renaissance Experimental Laboratory (rel) to the National Center for
Supercomputing Applications (ncsa) at the University of Illinois. Each time
I teach a geometrical graphics course in the rel there is a whole new gen-
eration in the ever evolving illiView collection.2 The classroom spills over
into the research community at the ncsa and beyond, on the swift lines of

∗The first part is paraphrased from an an article in the IEEE Computer, July, 1994,
issue on visualization, edited by Arie Kaufman, titled “Interactive Methods for the Visual-
ization of Geometry” by Andrew J. Hanson, Tamara Munzner, and George Francis. These
notes were prepared for the International Summer School on Scientific and Mathematical
Visualization, Ettenheim, Germany, 22-29 September 1996.

1Here we contracted “animation editor” to “animator,” both to safeguard the acronym
and prevent an unintentional latinate plural.

2See http://www.math.uiuc.edu/∼gfrancis, and http://new.math.uiuc.edu/ for
current information.

1



2 illiView

telnet, ftp and mosaic. In 1992, the advent of the cave3 virtual reality
theater accelerated this evolution. Now my students design their rtica so
that it converts easily into a cave application.All

8 possible choices
for C or C++, gl
or OpenGL, and
console or CAVE
have now been de-
veloped, and re-
duced to minimal
prototypes. But,
there are reserva-
tions, limitations,
and caveats. These
will appear as mar-
gin notes in this
edition.

What ties all these rticas together is an evenly balanced interpretation of
all four component terms of the acronym. The typical illiView application is
a single program of fewer than 1000 lines of basic C. It uses SGI’s celebrated
gl-library to call mathematical phenomena to life on an electronic stage.
Mouse and keys generally control all conceivable parameters in concert, re-
quiring ten-finger dexterity on the part of the pilot. To avoid breaking visual
concentration, we avoid popup menus and control panels. Current parameter
values and the status of options not visually obvious from the behavior on
the screen can be read from an optional head-up display in the viewport.

We take the idea of interactivity further than the console. Members of il-
liView are expected to understand, modify and, occasionally, rewrite the
code of their rtica from scratch. The device this software is meant to control
is the computer itself, not the VCR, the color-printer, or the slide projector.
Hence our rticas are not particularly suitable for making frame-by-frame
animations. We forego photo-realistic graphics features (anti-aliasing, sub-
tle lighting and textures) which could paralyze all but the fastest Irises. In
short, rather than treating the computer as a tool for animating a movie, we
think of it as the actor to be animated by the rtica.

There is one mathematical species that lends itself particularly well to the
ministrations of illiView, and that is the homotopy. There is a continuum
of sophistication involved here which extends, at one end, from the familiar
Euclidean motions (reflections, translations and rotations) and their non-
Euclidean generalizations, to wholly mysterious and unfamiliar phenomena,
such as eversions of the sphere, at the other. The middle ground is occupied
by non-rigid deformations during which the objects alter their appearance,
but maintain a recognizable identity. But now, non-linear interpolations and
free-form spatio-temporal splining of 2D and even 3D scenes, a.k.a. morph-
ing, pushes the envelope beyond such deformations towards purely mathe-
matical homotopies. We present some examples.Perhaps

other, newer exam-
ples are more ap-
propriate. We’ll
have a look at the
minimax sphere ev-
ersions, illiVert,
the gravita-
tional lens simula-
tion, graviLens, a
3-dimensional pic-
ture of an impos-
sible 4-dimensional
object, illUsion,
and more.

3This wonderful, totally immersive virtual environment includes the cavetm,
immersadesktm, and infinity walltm. It was created by Tom DeFanti, Dan Sandin,
Carolina Cruz-Neira and Dave Pape at the Electronic Visualization Laboratory, EVL, of
the University of Illinois at Chicago.

Renaissance Experimental Laboratory and UIMATH.grafiXlab.



Geometrical Computer Graphics 3

2 Homotopies

Example 1. illiConic
This rtica was started by a high-school math teacher and developed for
teachers’ workshops for making classroom videos. illiConic, based entirely
on Euclidean motions, is for exploring Apollonius’ unification of the conic sec-
tions, Kepler’s notion of continuity through infinity, and Dandelin’s spheres,
which touch the the nappes of the cone and the slicing place at the foci of
the conic.

Example 2 illiFive

The parts of this rtica were assembled in record time one summer by an
illiView team headed by NCSA visitor, François Apéry. It includes the
cuboctahedral sphere eversion,4 which is a piece-wise linear realization Morin’s
classical eversion. This rtica enabled us to verify the constructions, improve
the parametrization, and compare it with his even more challenging algebraic
sphere eversion. The motion of each vertex of this polyhedral model in 3-
space was explicitly constructed by Apéry.

Example 3 illiSnail

This shows how to deform a Möbius band with 3 half-twists into Ulrich
Brehm’s trefoil knotbox. The mathematical significance of illiSnail5 is
that all of its shapes are conformal (angle-preserving) projections into flat
3-space of Blaine Lawson’s ruled, minimal surfaces in the positively curved
3-sphere. These, in turn, have simple, trigonometric parameterizations with
many continuous and discrete parameters. Thus its homotopies are paths in
high (finite) dimensional function spaces.

Example 4 illiBoy

This rticas is representative of the tools we used to build a videotape. It
is part of a long-range project to generalize to 4-dimensional space-time the
methods Werner Boy invented in 1900 to construct his celebrated immersion
of the real projective plane. The goal is to animate the first published sphere
eversion exactly the way topologist Tony Phillips6 sketched it the pages of
Scientific American. The homotopies here are splined interpolations of sur-
faces initially input as 2-dimensional, hand-drawn crosssections.

4F. Apéry, Le Retournement du Cuboctaèdre, 1994 Prépublication de IRMA, Univ.
Louis Pasteur, 7, rue René Descartes, 67084 Strasbourg Cedex.

5George Francis. The Hypergraphics Honors Seminar at Illinois. In D. Thomas, ed..
Scientific Visualization in Mathematics and Science Teaching. Assoc. Adv. Comp. in
Educ., Charlottville, VA, 1995.

6Anthony Phillips, Turning a Sphere Inside Out, Sci. Amer., vol 214, 1966, pages
112–120.

(C) 1997, George K. Francis, Mathematics Department and NCSA, University of Illinois, Urbana, IL, 61801



4 illiView

3 Geometrical Computer Graphics
This edition con-
tains the first ten
chapters. Addi-
tional text will be
handed out later.
The
Chap. 1–4 and 10
constitute the core
course. Skip 10 if
you don’t have an
opportunity to use
the CAVE. The ge-
ometry is in Chap.
5–9. There is a
complete introduc-
tion to the Unix ed-
itor vi in Chap. 11.
We hope you will
supplement
these lessons with
relevant chapters in
Jim Blinn’s Corner
and other sources.

Lesson 1 illiOctahedron 101–107
Lesson 2 illiTorus 200–208
illiSkeleton Short Summary 300–313
The Snailhunt 400–418
Affine Geometry Lesson 501–506
Perspective Projections 601–610
Quaternions in Brief 701–706
Hyperbolic Geometry 801–805
Cardinal Splines 901–905
illiShell97 1001–1015
Signon, basicUnix, vi-editing 1100–1112

4 The Lecture/Demonstrations
These 4 lectures
and the following 3
lessons constitute a
short course given
at a conference
in Ettenheim, Ger-
many, last year. In
the present (1997)
course we will use
more and different
examples, and the
short-course notes
will be amplified
in later chapters.
However, advanced
students may wish
to work their way
through the short
course at their own,
accelerated, pace.

Lecture 1. Teaching Real-time Interactive Computer Animation.
We introduce the idea of illiView and how it complements other geometrical
viewing packages, like Geomview from the Geometry Center, and Andy Han-
son’s Meshview. It deals with the way I teach several courses in Geometrical
Graphics. The protagonist here is illiConic which was used in a 2 week
teachers’ workshop to produce a 75 minute videotape. I will show brief parts
of this videotape during the the video-night.

Lecture 2.A Post-Euclidean Walkabout in the CAVE
An illiView team of graduate and undergraduate students from my courses
put together a 10 minute piece for SIGGRAPH94. It was ‘performed’, per-
haps 30 times for 10 visitors at a time to the CAVE wholly immersive virtual
environment. I plan to describe the problems we faced working within the
constraints imposed by the new technology, the nature of the audience, and
subject matter. And perhaps, why this piece turned out to be so robust that
it is still in the repertoire of our CAVE in Urbana.

Lecture 3.An illiView Geodesy
This demonstration is about visualizing ODEs, PDEs and, especially, the
geodesic flow on surfaces using shared memory and distributed parallel com-
puting. This is current work and should complement some of the other
lectures given at the Summerschool.

Lecture 4. The Minimax Sphere Eversion
A videotape of this presentation at Supercomputing’95 will be shown during

Renaissance Experimental Laboratory and UIMATH.grafiXlab.



Geometrical Computer Graphics 5

the video night. In the hour available for the demonstration, I intend to
present the new work completed since then, mainly on visualizing the double-
locus surface.

5 Sample Codes and illiShell for 1997.

It is useful to summarize the framework within which we offer sample pro-
grams, coding prototypes, and examples written by previous students. We
distinguish between 3 classes of current students: novices, apprentices and
experts. Novices should work through the tutorials as presented. Their dili-
gence will be rewarded with generous help from experts and the instructor.
Experts are on their own. Apprentices are encouraged to become adven-
turous as soon as they feel confident. But they should also be warned that
if they stray from the structure of the prototypes too radically, it will be
impossible to do efficient debugging when they get into deep water.

The most efficient way for us to debug troubled modifications from a pro-
totype is do compare code line-by-line with an SGI software tool for this
purposes. Therefore, it is essential that successive modifications differ in
essential places, leaving other lines untouched. 7

5.1 Prototypes vs. Student Projects

Over the years it has proved useful to provide a set of prototype programs
from which students can learn, or which students can modify to suit their pur-
poses. In addition, current students may study and adapt programs written
by previous students. The difference between these two classes of examples
this. While (almost) all student programs are structural descendants from
prototypes available at the time of their construction, they are not necessar-
ily the best examples to follow. On the other hand, the small set of didactic
prototypes, loosely grouped around the current illiShell, 8 change from year
to year with decreasing differences. In the C/gl line, we have achieved con-
vergence. In the more modern C++/OpenGL line, we have made a good
start but there are many competing versions written by a variety of authors.
In such esoterica, like JAVA/VRML/etc we have only student samples, and
have made no attempt to formulate prototypes.

7In other words, don’t ruin this debugging scheme by pretty-printing modifications. If
our style offends your sensibility, wait until your program works flawlessly to pretty-print.

8The name, illiShell was chosen to signify the shell, or husk, in which to contain a
more elaborate customization. It does not refer to any of the Unix shells.

(C) 1997, George K. Francis, Mathematics Department and NCSA, University of Illinois, Urbana, IL, 61801



6 illiView

5.2 How to use illiShell97

The current illiShell is written in C, but the graphics is written in OpenGL.
Since OpenGL requires an alien windowing library, we have opted for glut.
The CAVE library is Version 2.6. In addition, there are sample programs
available using Xlib display. But these variants should be used only by ex-
perts who can tolerate the additional difficulties. Most of the examples older
than 1997 use the C/gl/CAVE libraries that may exhibit various difficulties
in compiling or even running on Irix 6.2 (the system in REL). If you are an
expert, you might just reverse engineer an illiShell to see what the initial 3
lessons are about.

Please remember, however, that the essential feature of an illiShell is its abil-
ity to run in console-mode as well as in CAVE-mode. The console-mode
should not be confused with running a CAVE-worthy program in simulator
mode on a console. The console-mode should be compile also without the
CAVE libraries present. This feature should be maintained in all modifica-
tions.

5.3 Tutorials leading to illiShell97

There are a series of elementary rticas, with nicknames like oc1.c, tr1.c,

skel.c etc., which accompany the introductory lessons. These do not involve
CAVE code and therefore use C/gl rather than OpenGL to avoid extraneous
windowing baggage. However, if you wish to start with OpenGL from the
start (which you must in order to compile your code on an WiNTel or other,
non-SGI platform) you can use the relevant versions of the same programs.
But we strongly recommend that you do not mix gl with OpenGL.

Experts are welcome to work in C++, or even in JAVA. But if you do,
you will be required to explain deviations from the C prototypes to the
instructor and to the class. These explanations will help you clarify your
own thinking, as well as helping your classmates understand the purpose of
these contemporary styles.

Apprentice programmers who already know C but are inclined to learn C++
in the course, should consider translating the elementary rticas into C++
not just superficially, but conceptually, without abandoning their essential,
pedagogical nature.

Renaissance Experimental Laboratory and UIMATH.grafiXlab.


