
Modeling Learning and Strategy Formation
as Phase Transitions in Cortical Networks

Robert Kozma, Yury Sokolov, Marko Puljic
Department of Mathematics

University of Memphis
Memphis, TN, 38152, USA

Email:{rkozma, ysokolov}@memphis.edu

Sanquing Hu
College of Computer Science
Hangzhou Dianzi University

Hangzhou, China
Email: sqhu@hdu.edu.cn

Miklós Ruszinkó
Alféd Rényi Institute of Mathematics

Hungarian Academy of Sciences
Budapest, 1053, Hungary

Email: ruszinko.miklos@renyi.mta.hu

Abstract—Learning in the mammalian brain is commonly
modeled through changing synaptic connections in cortical net-
works. Dynamical brain models indicate that learning leads to
the formation of limit cycle oscillations across cortical areas
and that the oscillatory regimes re-emerge when the learnt
input is presented to the system. In this work, learning is
modeled using a graph-theoretical model, which captures salient
characteristics of the learning process. We introduce a random
graph that combines a torus with lattice edges and additional
random edges, which have power law length distribution. On
this graph, we consider bootstrap percolation with excitatory and
inhibitory vertices. Theoretical and numerical studies indicate the
presence of various dynamical regimes on these graphs. Here,
the transitions between fixed-point and limit cycle attractors are
analyzed. We link this transition to changes in cortical networks
during category learning, which have been observed in animal
experiments using electro-cortiograph (ECoG) arrays over sen-
sory cortices. We discuss how learning leads to categorization and
strategy formation, and how the theoretical modeling results can
be used for designing learning and adaptation in computationally
aware intelligent machines.

I. INTRODUCTION

A fundamental challenge of decision making is to identify
a scenario describing the actual situation of a biological or
artificial system at a given instance. Once a suitable scenario
is identified out of many possible scenarios, a corresponding
strategy can be selected to achieve the system’s goal in the
given context [9]. If the system’s internal conditions or the
external environment change, the scenario changes as well,
which requires a change in strategy that corresponds the best
way to the new situation [3]. Animals have the capacity of
rapidly changing their strategy and the corresponding actions
if needed, e.g., changing from a quiet grazing behavior to
the escape mode if a threat is perceived. However, strategy
change is still a hardly understood area of cognitive science.
Behavioral and physiological data indicate the presence of
frequent, sudden changes in strategies, but a consistent theory
of the underlying neurodynamic processes is still missing [14].

Recent progress in studying biological learning processes
may provide important insights into the mechanism of strat-
egy change. Most of the current physiological and theoreti-
cal frameworks of learning focus on incremental adaptation

mechanisms, as exemplified by the reinforcement learning
framework, while the discontinuous nature of behavioral de-
velopment observed in strategy change is not well understood.
Here, we summarize experimental evidence of sudden changes
during the learning process. Moments of sudden insight and
deep understanding are not unfamiliar in our everyday learning
practice. This is colloquially referred to as the ”Aha” moment
when you suddenly exclaim, after minutes or hours of trying
to make sense of some problem: ”Aha, of course, now I do
understand!”

We employ a neurodynamic theory based on the hierarchy
of Freeman K sets, including K0, KI, KII, KIII, and KIV sets
corresponding to increasing complexity of structure, dynamics,
and function [2], [10], [11]. K0 sets describe the basic open-
loop nonlinear unit converting pulse density to wave density, as
the basic building block of neurodynamics. KI is a population
of excitatory or inhibitory K0 units, which can generate non-
zero fixed point dynamics for a sufficient level of mutual
interaction. KII sets consist of interacting excitatory and
inhibitory KI sets producing limit cycle oscillations at specific
frequency bands [16]. Higher level K models include KIII
and KIV sets, which describe the intentional action-perception
cycle and awareness experience [10].

In this paper, we introduce a graph theoretical model
featuring phase transition behavior, to interpret learning effects
observed in experiments. The present work focuses on KI and
KII sets, the stability properties of which has been studied,
e.g., in [16]. We develop a two-dimensional graph to model
the cortical neuropil with short and long edges describing the
combination of short dendritic connections and long axons.
The long edges have power law length distributions, leading
to drastic reduction of the diameter of the brain graph, i.e., with
diameter of the order of log(n) in an n × n lattice [7]. Our
model incorporates excitatory-inhibitory populations as given
by Freeman KII sets, and we define an activation process over
the graph describing propagating volleys of pulse densities
across the cortex. We derive rigorous mathematical conditions
for the emergence of self-sustained background activity in ex-
citatory neural populations as phase transitions, depending on
the importance of long edges. Phase transitions from non-zero
fixed point to oscillatory behavior are characterized. Learning
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has been previously addressed in K models using Hebbian
rule [11]. Learning in this work is described through changes
in the update rule describing mutual activation of connected
nodes and changes in long-range connectivity. Learning leads
to sudden onset of large connected components near criticality,
interpreted as the formation of Hebbian cell assemblies. We
conclude with discussions concerning the use of the introduced
results for the development of artificially intelligent systems,
which show emergent properties of awareness experience
while exploring the environment.

II. EXPERIMENTAL

Learning in the mammalian brain is commonly modeled via
changing synaptic connections in cortical networks. According
to Freeman’s dynamic brain model [3], synaptic learning
modifies the attractor landscape by forming localized attractor
basins manifested through amplitude modulation (AM) pat-
terns of spatially distributed cortical activity with narrow-band
oscillations. Once an input category is stored in the dynamic
attractor landscape, that input evokes a specific AM pattern
in a narrow frequency band every time it is presented to
the system. The re-emergence of the AM pattern indicates
successful recall of the learnt category through the collapse of
the complex dynamics to a localized basin. The AM pattern
manifests the meaning of the input stimulus as perceived by
the animal and it leads to the selection of a corresponding
action [4].

In a collaborative project, we exploit the experimental and
theoretical accessibility of a particular rodent learning model,
to analyze the neuronal mechanisms of behavioral strategy
change. Experiments are conducted at LIN, Germany using
multi-electrode arrays measuring surface potentials over the
auditory cortex (4x5 array) and local field potentials in the
ventral striatum of Mongolian gerbils trained using well-
established Go/NoGo discrimination paradigm. The gerbil
learns to move from one side of the cage to the other when
a rising tone is heard. This is the Go signal, and the gerbil
receives a negative reinforcement signal (a small electric shock
through the bottom grid of the box) if it does not move
in response to the Go signal. On the other hand, the gerbil
is supposed remain in its present position in the case of
a falling tone (No-Go signal). The experiments document
sudden transitions in the behavior as learning progresses, i.e.,
the gerbil is in a naive state (no learning) in the first part of the
experiments without significant improvement in its learning
performance. However, at a given time point it suddenly
exhibits significantly improved performance, and maintains
this good performance there after. This is the ”aha” moment
of gerbil, when it learns how to avoid the penalty signal.
For details of the experimental paradigm, see, [14], [15], [6].
Our analysis at present focuses on data obtained over the
auditory cortex (AC) with Go or No-Go conditions during a
training sequence of 4 to 6 days for any given gerbil. Gerbils
typically perform poorly in the first few days, however, they
exhibit sudden improvement in their performance afterwards.
For some ”smart” gerbils, the learning is completed during

Fig. 1. Learning curves observed in the gerbil experiments. The first two
(smart) gerbils learn the task in Day 1, and demonstrate good performance
the remaining trials; see the curves marked by stars and squares (blue and
green). Gerbil 3 needs three days to learn the same task, see diamonds (red)
and even then its performance lags the other two (smart) gerbils.

the first day, and they produce the required move correctly
from day two onwards; see Fig. 1, curves marked by with
stars and squares. For other gerbils it may take two or even
three days to learn the task, Fig. 1, curve with diamond. Once
they learn to categorize the auditory signal, their good cate-
gorization and action selection performance is maintained for
the rest of the trials. Our analysis confirms that measurements
produce classifiable amplitude modulation (AM) patterns in
the ECoG array over the auditory cortex in the gamma band,
in agreement with expectations [6].

Using a generalized Granger causality metric (NC) [5],
[12], we document the formation of enhanced connectivity
between certain electrode locations in the auditory cortex as
learning progresses, reaching a plateau after day 2 or 3 [6].
Such behavior supports the hypothesis about the formation of
Hebbian cell assemblies (HCA) during reinforcement learning,
leading to a phase transition when a critical connectivity
density pattern is reached. This is the motivation of the graph
theoretical model in the present work, when we show how
structural changes in a critical network model can produce
dynamic behaviors (narrow-band oscillations) as the result of
the learning process.

III. RANDOM GRAPH MODEL

A. Definition of the random graph over the lattice

Since the early 2000’s, random graph theory has been
used successfully to describe the interaction between the
structure and dynamics of cortical networks [8], [1]. Based
on those foundations, recently, we introduced a random graph
model GZ2

N ,pd
that consists of a square grid with periodic

boundary conditions, torus, and additional random edges in
[7]. The probability of random edge between a pair of vertices
is inversely proportional to the graph distance between the
vertices defined on the torus. The random edges are called
long and the edges of the torus short. The definition of the
model captures an important property of cortical networks,
that is, it is more likely for a neuron to have connections to
nearby neurons than to neurons which are far from the given
one.
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Fig. 2. Illustration of the additional long edges over the square lattice. The
three plots correspond to 8, 53, and 256 randomly added long edges (from
left to right), respectively; the original edges of the 64 × 64 lattice are not
shown.

The model is defined as follows. The set of vertices of the
random graph GZ2

N ,pd
is given by the vertex set of Z2

N , where
Z2
N is a torus on N2 vertices. All the edges of the torus Z2

N

are presented in GZ2
N ,pd

. The random edges of GZ2
N ,pd

are
distant-dependent, i.e., the probability that an arbitrary pair of
vertices, u, v, that are at graph distance d apart of each other,
is given by

pd = P
(

(u, v) ∈ E(GZ2
N ,pd

)|dist(u, v) = d
)

=
c

Ndα
, (1)

where d > 1, c is a positive constant, and α is the power
exponent of long edge length distribution. In this work, we
use α = 1, for simplicity. It is assumed that there are no
multiple edges between the vertices. Examples of graphs with
additional edges are shown in Fig. 2; there are 8, 53, and 256
edges added in the plots from left to right, respectively.

B. Properties of the random graph model

Here we summarize some properties of the random graph;
detailed exposition is given in [7]. First we note that the
addition of random edges drastically reduces the diameter (D)
of the graph. Clearly, the square lattice has diameter N . We
show that the diameter decreases from linear in the number of
vertices to logarithmic, when long edges are added, i.e., the
following holds:

D(GZ2
N ,pd

) ∼ (logN)

This graph property is important for cortical networks since
the addition of long edges may lead to faster propagation of
activity over the network. For example, consider 1010 units
arranged over a square lattice N × N , where N = 105. The
diameter of the regular torus on this lattice (without long
edges) is d ∼ 105. However, adding some random edges,
reduces the diameter to D ∼ log(105) ∼ 5. This example
corresponds to the case of small mammalian, such as gerbils,
and it shows the importance of long edges in defining the brain
network structure.

From the above fact it follows that addition of random
edges changes drastically the structure of the torus. Moreover,
the random graph is no longer a regular graph as it is
the torus. To see this let us describe the degree probability
distribution. Without long edges, this distribution is uniform,
i.e., all vertices have 4 edges to their neighbors in a square
lattice. When adding long edges randomly, it is possible to

approximate the degree distribution with respect to long edges
by a Poisson probability distribution. Let W be the random
variable describing the degree of a vertex with respect to long
edges only. Then the degree distribution of the vertex including
long and short edges is W+4. We have the following property
for the probability distribution of long edges; for a proof of
the lemma see [7]. The probability that a vertex has degree k
considering the long edges is given by

P (W = k) =
∑

k2+...+kN=k

N∏
i=2

(
|Λi|
ki

)
(
c

Ni
)ki(1− c

Ni
)|Λi|−ki

(2)
The total variation distance dTV satisfies

dTV =
1

2

∑
j≥0

|P(W = j)− P(Y = j)| = O(1/N), (3)

where W is the degree distribution of our random graph, while
Y is a random variable with Poisson distribution Po(λ), with
λ = 4c ln 2. Thus the degree distribution of our random graph
approaches Poissonian law better and better as the size N
increases. It is natural to expect that as λ increases the number
of additional random edges growth, which is rigorously proven
in [7].

C. Bootstrap percolation on GZ2
N ,pd

The spread of activity in the brain can be described by a
simplified mathematical model - bootstrap percolation (BP).
We state here a generalized definition of bootstrap percolation
that consists of two types of vertices, which correspond to
excitatory and inhibitory units. Bootstrap percolation with one
type of vertices (excitatory or inhibitory) can be viewed then
as a special case. Each vertex of the graph is described by
two random variables, its type and state. The types of vertices
are excitatory (1) or inhibitory (2). We define the type as a
Bernoulli random variable Be(ω), which is selected at the start
of the process and remains unchanged afterwards. In contrast,
state of a vertex may change during the process as follow. At
each time step a vertex is either active or inactive. For each
vertex v of the graph we assign a binary function χv(t) which
describes the activity state of the vertex at time t. A vertex
is said to be active if χv(t) = 1, otherwise it is inactive and
χv(t) = 0. For each vertex v, the potential function χv(0) at
the beginning is a Bernoulli random variable Be(p).

Let A(t) = {v ∈ V (GZ2
N ,pd

)
∣∣ χv(t) =

1 & v is of type i}, i ∈ {E, I} denote the set of all active
vertices at time t, while AE(t) and AI(t) are the set of
active vertices of type E and I at time t, respectively. Thus,
A(t) = AE(t) ∪ AI(t). A(0) consists of all vertices that are
active at the beginning. Each vertex may change its activity
based on the states of its neighbors. For a vertex v which is
of type E, the evolution rule is given by

χv(t+ 1) = 1

 ∑
u∈NE(v)

χu(t)−
∑

u∈NI(v)

χu(t) ≥ k

 , (4)
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where NE(v) and N I(v) denote the subset of vertices in the
closed neighborhood of vertex v, which are of E and I type,
respectively; and 1 is the indicator function. For a vertex v of
type I , the following rule holds

χv(t+ 1) = 1

 ∑
u∈NE(v)

χu(t) +
∑

u∈NI(v)

χu(t) ≥ k

 =

1

 ∑
u∈N(v)

χu(t) ≥ k

 , (5)

where N(v) = NE(v) ∪ N I(v) is the closed neighborhood
of vertex v. The rules try to capture the significant difference
and importance of each time in neurodynamics.

Fig. 3. Illustration of the update rule over the square lattice; black dots are
active sties, empty circles indicate inactive sites. The leftmost subplot shows
the initial activation at t = 0; the center plot is the activation at the next time
instant t = 1 for k = 1; the right plot is the case t = 1 and k = 2.

The bootstrap percolation rule is illustrated in Fig.3 in the
case of k = 1 and k = 2. For simplicity, only excitatory nodes
are considered, and there is no long edges added (λ = 0).
Initializing a few vertices at t = 0 marked by black circles
in the left plot, all the neighbors of the initial active nodes
are active in the case of k = 1 (center plot). For k = 2,
however, only one nodes remain action at time t = 1, i.e.,
the one which had at least 2 active neighbors in the previous
step. The rigorous mathematical analysis of the percolation
process in the 2D random graph with long additional edges is
a difficult mathematical problem, see, e.g. [13].

IV. MEAN-FIELD APPROXIMATION IN BOOTSTRAP
PERCOLATION

A. The case of one type of (excitatory) vertices

In mean-field (MF) approximation it is assumed that the
states and degrees are well-mixed, moreover, different vertices
are regarded as independent. Under these assumptions ρt can
be well-approximated by its mean, where ρt = A(t)/N2, and
N2 is the size of the torus. This can be stated more precisely
as follows. Let Bin(n, p) be a binomial random variable. Then
the density ρt in the mean-field model satisfies the following
stochastic recursion.

Lemma 1: For the mean-field approximation on graph
GZ2

N ,pd
with N2 nodes, ρt is a Markov process given by

N2ρt+1 = Bin(N2ρt, f
+(ρt)) + Bin(N2(1− ρt), f−(ρt)),

(6)

where

f+(x) =
N2−1∑
n=4

P (deg(v) = no)
n+1∑
i=k

(
n

i− 1

)
xi−1(1− x)n−i+1

(7)

f−(x) =
N2−1∑
n=4

P (deg(v) = no)
n∑
i=k

(
n

i

)
xi(1− x)n−i, (8)

where no = n− 4 is the degree based on random edges only.
For a given ρt, ρt+1 has mean f(ρt) and variance g(ρt)/N

2

where

f(x) = xf+(x) + (1− x)f−(x), (9)
g(x) = xf+(x)(1− f+(x)) + (1− x)f−(x)(1− f+(x)).

(10)

The rigorous proof of the existence of phase transition
in the random graph is proven in the main theorem of [7].
Based on the analysis of the above Markov process, it can be
summarized as follows:

Theorem 1: In the mean-field approximation of the boot-
strap percolation wtih one type of vertices on the random
graph GZ2

N ,pd
there exists a critical probability pc such that

for a fixed p, with high probability for large N , all vertices
will eventually be active if p > pc, while all vertices will
eventually be inactive for p < pc. The value of pc is given as
the function of k and λ as follows:
(i) For k = 0 and any λ, pc = 0 and all vertices will become

active in one step for any p.
(ii) For k = 1 and any λ, pc = 0, i.e., for any fixed p >

0, all vertices will eventually become active with high
probability.

(iii) For k = 2 and any λ, pc = x2(λ), where x2(λ) ∈ (0, 1)
is a nontrivial solution to x = f̄2(x).

(iv) For k = 3 and any λ, pc = x3(λ), where x3(λ) ∈ (0, 1)
is a nontrivial solution to x = f̄3(x).

One of the corollaries of this theorem is that critical
probability pc in cases k = 2, 3 decays with respect to λ. This
means that in the presence of one type of vertices activation
spreads faster as the number of edges increases. In particular,
when k = 2 we have pc ≤ x2(0) = 0.5, and when k = 3
the critical probability is bounded by pc ≤ x3(0) = 0.131.
Detailed evaluations indicate high value of pc for λ values
up to about 100, and a drop of the critical probability in the
range of λ ∈ [102, 103]. For λ > 103, the critical probability
diminishes for both k values.

B. Mean-field approximation of BP with two types of (excita-
tory and inhibitory) vertices

In the case when there are two types of vertices we need to
take into account the evolution of two density functions that
correspond to active nodes of each type. Let

ρ
(1)
t =

|A1(t)|
ωN2

(11)
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and
ρ

(2)
t =

|A2(t)|
(1− ω)N2

(12)

be the densities of the first and second types, correspondingly,
where Ai(t) is the number of active vertices of type i, i = 1, 2,
at time t. Then, in particular, the density of all active nodes
is given by

ρt = ωρ
(1)
t + (1− ω)ρ

(2)
t =

|A1(t)|+ |A1(t)|
N2

.

Similarly as for the BP with one type of vertex, it is possible
to derive mean-field approximation of BP with two types; here
we summarize the results [13].

Lemma 2: For the mean-field approximation on graph
GZ2

N ,pd
with N2 nodes, which are of the two types and a

vertex is of the first type with probability w, ρ(i)
t , i = 1, 2, are

defined by

wN2ρ
(1)
t+1 = Bin(wN2ρ

(1)
t , f+

1 (ρ
(1)
t , ρ

(2)
t ))

+Bin(wN2(1− ρ(1)
t ), f−1 (ρ

(1)
t , ρ

(2)
t )), (13)

(1− w)N2ρ
(2)
t+1 = Bin((1− w)N2ρ

(2)
t , f+

2 (ρ
(1)
t , ρ

(2)
t ))

+Bin((1− w)N2(1− ρ(2)
t ), f−2 (ρ

(1)
t , ρ

(2)
t )), (14)

Moreover, ρ
(i)
t+1 is given by a distribution with mean

fi(ρ
(1)
t , ρ

(2)
t ) and variance gi(ρ

(1)
t , ρ

(2)
t )/N2, i = 1, 2, where

f1(x, y) = xf+
1 (x, y) + (1− x)f−1 (x, y) (15)

f2(x, y) = yf+
2 (x, y) + (1− y)f−2 (x, y) (16)

g1(x, y) = xf+
1 (x, y)(1− f+

1 (x, y)) +

(1− x)f−1 (x, y)(1− f+
1 (x, y)) (17)

g2(x, y) = yf+
2 (x, y)(1− f+

2 (x, y)) +

(1− y)f−2 (x, y)(1− f+
2 (x, y)) (18)

Functions f±j , for j = 1, 2 are defined as follows

f+
1 (x, y, ω) =

N2−1∑
n=4

P(deg(v) = n− 4)
n+1∑
i=1

p1+
i (x, y, ω)(

n

i− 1

)
(ωx+ (1− ω)y)i−1(1− ωx− (1− ω)y)n−i+1 (19)

f−1 (x, y, ω) =
N2−1∑
n=4

P(deg(v) = n− 4)
n∑
i=0

p1−
i (x, y, ω)(

n

i

)
(ωx+ (1− ω)y)i(1− ωx− (1− ω)y)n−i (20)

f+
2 (x, y, ω) =

N2−1∑
n=4

P(deg(v) = n− 4)
n+1∑
i=1

p2+
i(

n

i− 1

)
(ωx+ (1− ω)y)i−1(1− ωx− (1− ω)y)n−i+1

f−2 (x, y, ω) =
N2−1∑
n=4

P(deg(v) = n− 4)
n∑
i=0

p2−
i(

n

i

)
(ωx+ (1− ω)y)i(1− ωx− (1− ω)y)n−i

where pj−i = P( a vertex will be active
∣∣ the vertex is non-

active, of type j and it has i active neighbors in the closed
neighborhood) and pj+i = P( a vertex will be active

∣∣ the
vertex is active, of type j and it has i active neighbors in the
closed neighborhood ), for j = 1, 2, and they are given by

p1+
i (x, y, ω) =

b i−k
2 c∑
t=0

(
i− 1

t

)
ht(x, y, ω)(1−h(x, y, ω))i−t−1,

(21)

p1−
i (x, y, ω) =

b i−k
2 c∑
t=0

(
i

t

)
ht(x, y, ω)(1− h(x, y, ω))i−t,

(22)

p2±
i =

{
1 , i ≥ k,
0 i ≤ k − 1

(23)

To describe the dynamical regimes of the percolation pro-
cess over the random graph with two types of vertices, one
needs to find the solutions of the following set of fixed-point
equations: {

f1(x, y) = x,
f2(x, y) = y.

(24)

The fixed points can be either stable or unstable, which
determine the nature of the percolation dynamics, e.g., fixed
point, limit cycle, or non-periodic oscillations. The dynamics
of the BP is analyzed in the next section as the function of
the parameters of the model.

C. Dynamical regimes of the BP process over the random
graph

Various relationships can be derived between the dynamics
and model parameters by analyzing functions f(x), f1(x, y)
and f2(x, y). These studies lead useful approximations about
the existence of a particular type of dynamics. For example,
the following property is proven [13]:
In the mean-field approximation of bootstrap percolation with
two types of vertices over GZ2

N ,pd
, all vertices of both types

will eventually be inactive if the initialization probability is
below a specific threshold p < pE .

Numerical examination of BP with two types of vertices
shows dynamic behavior richer than in BP with only one
type of vertices. In particular, when parameter k in the update
rules for vertices of the first and second types are different,
limit cycle dynamics may appear. A bifurcation diagram of
the process with excitatory-inhibitory nodes is shown in Fig.
5 with respect to ω, λ. Here parameters k1 = 2 and k2 = 3.
To obtain this result, functions (15) and (16) were iterated for
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a wide range of λ, ω, and p values. The type of dynamics for
a fixed parameter triple has been identified after omitting the
initial transients. Since the type of a vertex is determined at
the beginning uniformly at random, thus ω defines the overall
ratio of excitatory and inhibitory nodes, which is unchanged
during the process. It is observed that limit cycle behavior
belongs to excitatory to inhibitory ratio of around 4/1.

0 2 4 6 8 10

0.7

0.75

0.8

0.85

l

u

I

II

III

Fig. 4. Bifurcation diagram of BP with two types, where k1 = 2 and k2 = 3.
Limit cycle dynamics exists in region I, processes of both types eventually
die out in II, and non-zero fixed point dynamics exist in region III.

V. DISCUSSION OF GERBIL LEARNING BASED ON RESULTS
WITH THE GRAPH MODEL

In this section we analyze the potential role several key
model parameters play in interpreting the learning dynamics of
the cortical tissue. Namely, we study the following parameters:
the significance of long edges (λ) that create small-world
phenomena; the ratio of the number of excitatory versus
inhibitory nodes (ω) related to the onset of narrow band
oscillations; and threshold values of the update rule (k1 and
k2), which define the sensitivity of the node to changes in
its neighborhood. For the purpose of the present analysis, we
focus on possible changes in k1 and k2 due to learning, as
well as the evolution of the non-local connectivity through λ,
while we do not discuss possible impact due to changes in ω.

Previously, we conducted causality analysis of experimental
data obtained during category learning in gerbils, and we
documented the formation of functional connections in the
auditory cortex. The applied signal processing approach has
been introduced previously in the literature as ”New Causality
(NC)” [5]. NC is a generalization of Granger causality (GC),
which evaluates the role one time series play in predicting
another time series; for details see [6].

We collected EEG channel pairs over a 4 × 5 grid, and
searched for pairs with different bidirectional causality flows
for the two types of stimuli, i.e., for the Go and No-Go signals.
We divided the total duration of the experiments in two parts.
In Part I the animal does not react well to the Go signal; this
is naive state of the animals. Part I is Day 1 for the two smart
gerbils in Fig. 1 (stars and circles), and it takes Days 1, 2,
and 3 for the third gerbil (diamonds). Part II corresponds to
well-trained behavior, that consists of Days 2, 3, and 4 for the
smart gerbils, and Days 4, 5, and 6 for the third gerbil. We
counted the electrode pairs which had causality relationship in
the sense of NC.

The results are summarized in Table I. There are causal pairs
both in the naive stage (Type I) and trained stage (Type II),
but the number of causal pairs is larger in the case of trained
animal (Type II). This conclusion has been tested and verified
with a number of other animals, in total 7 gerbils have been
analyzed in [6]. A systematic statistical test (based on paired
t-test) shows that the hypothesis that the number of pairs is
larger in Type II that in Type I is valid with high confidence
(p = 0.01).

TABLE I
NUMBER OF CAUSALITY PAIRS FOR 3 GERBILS

Type Gerbil 1 Gerbil 2 Gerbil 3

I (Naive) 11 3 8

II (Trained) 50 13 49

This is an important result showing that we can detect neural
correlates of reinforcement learning in the gerbil’s cortex using
NC measures. The difference between the behavior of the
naive and trained animal has now a experimentally observable
neural measure through the formation of connections (causal
links) between certain cortical regions as the result of learning.
These links and regions may be the manifestations of the
formation of Hebbian Cell assemblies (HCA) [3]. Until now
there have been very few direct evidences for HCAs; our
results in fact may provide such evidence. Based on Freeman
neurodynamics, we know that learning is closely related to
the onset of narrow band oscillations in the cortex as a con-
sequence of sustained reinforcement signal. This observation
provides an important information for our modeling studies.

Our graph model can provide theoretical insights to interpret
the previously described experimental results. Our model
exhibit phase transitions between fixed point and limit cycle
dynamics when certain control parameters of the model vary.
Here let us us focus on the significance of long edges (λ)
and threshold values of the update rule (k1 and k2). For
example, in the case of k1 = k2 = 3 our model show fixed
point behavior, which can change to oscillatory behavior if
k1 is decreased to 2. Decreasing k1 can be interpreted as the
reduction of the dynamic threshold in the interaction between
the cortical locations due to learning. Moreover, changes in λ
can also produce transitions between dynamic regimes. This
is illustrated in Fig. 6, which is based on the phase diagram
obtained from our model and depicted in Fig. 5.

The emergence of the oscillatory behavior in a narrow
frequency band is shown in Fig. 6 using the solid (blue) region.
Oscillatory behavior is a hallmark of learning effects, which
are modeled in our NP model using the adaptation (decrease)
of excitatory threshold k1 from its original value of 3 to 2,
while the inhibitory threshold k2 remained unchanged. Note,
that in the case of high values of both excitatory and inhibitory
thresholds k1 = k2 = 3 no oscillatory behavior takes place,
rather the dynamics converges to fixed points (not shown). In
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Fig. 5. Dynamic regimes illustrated over the phase diagram in the λ versus
ω space. The solid dark region correspond to conditions with limit cycle
oscillations created as the result of learning. Transitions from limit cycle
regime to fixed point (dashed area) indicate the absence of learnt stimulus. The
region corresponding to the hypothetic cognitive phase transitions is circled
by dashed line (red).

short, k1 may be indeed a control parameter of the learning a
category formation process.

VI. CONCLUSIONS

The main goal of this paper has been introducing a graph
theoretical model featuring phase transition behavior, to in-
terpret learning effects observed in experiments. Special em-
phasis has been on phase transitions in the dynamics of our
model which we have be able to control using basic model
parameters, such the threshold of a unit to respond to the
interactions by its neighbors (k1, k2, and the extent of the long-
range interaction obeying power law behavior (λ), as well as
the role of inhibitory nodes (ω). We argued that the structural
changes in the network lead to changes in the percolation
dynamics, which in turn can be responsible for the sudden
behavioral transition of gerbils from a naive to trained state.

In a broader context, we propose a plausible argument for
the widely observed ”aha” moment of recognition. In the
”aha” moment the subject, animal and human alike, suddenly
becomes aware of some deeper connections in the world
around us or inside us, which are relevant to us. These
preliminary results should be analyzed in details to derive
conclusive results on the central questions on how we perceive
our world.
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