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Abstract

Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in machine learn-
ing. Automatic di↵erentiation (AD), also called algorithmic di↵erentiation or simply “auto-
di↵”, is a family of techniques similar to but more general than backpropagation for e�-
ciently and accurately evaluating derivatives of numeric functions expressed as computer
programs. AD is a small but established field with applications in areas including compu-
tational fluid dynamics, atmospheric sciences, and engineering design optimization. Until
very recently, the fields of machine learning and AD have largely been unaware of each
other and, in some cases, have independently discovered each other’s results. Despite its
relevance, general-purpose AD has been missing from the machine learning toolbox, a situ-
ation slowly changing with its ongoing adoption under the names “dynamic computational
graphs” and “di↵erentiable programming”. We survey the intersection of AD and machine
learning, cover applications where AD has direct relevance, and address the main imple-
mentation techniques. By precisely defining the main di↵erentiation techniques and their
interrelationships, we aim to bring clarity to the usage of the terms “autodi↵”, “automatic
di↵erentiation”, and “symbolic di↵erentiation” as these are encountered more and more in
machine learning settings.
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3.2 Reverse Mode

AD in the reverse accumulation mode12 corresponds to a generalized backpropagation al-
gorithm, in that it propagates derivatives backward from a given output. This is done by
complementing each intermediate variable v

i

with an adjoint

v̄
i

=
@y

j

@v
i

,

which represents the sensitivity of a considered output y
j

with respect to changes in v
i

. In
the case of backpropagation, y would be a scalar corresponding to the error E (Figure 1).

In reverse mode AD, derivatives are computed in the second phase of a two-phase pro-
cess. In the first phase, the original function code is run forward, populating intermediate
variables v

i

and recording the dependencies in the computational graph through a book-
keeping procedure. In the second phase, derivatives are calculated by propagating adjoints
v̄
i

in reverse, from the outputs to the inputs.
Returning to the example y = f(x
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), in Table 3 we see
the adjoint statements on the right-hand side, corresponding to each original elementary
operation on the left-hand side. In simple terms, we are interested in computing the contri-
bution v̄
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i

of the change in each variable v
i

to the change in the output y. Taking the
variable v

0

as an example, we see in Figure 4 that the only way it can a↵ect y is through
a↵ecting v

2

and v
3

, so its contribution to the change in y is given by
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In Table 3, this contribution is computed in two incremental steps
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lined up with the lines in the forward trace from which these expressions originate.
After the forward pass on the left-hand side, we run the reverse pass of the adjoints

on the right-hand side, starting with v̄
5

= ȳ = @y

@y

= 1. In the end we get the derivatives
@y

@x1
= x̄

1

and @y

@x2
= x̄

2

in just one reverse pass.
Compared with the straightforwardness of forward accumulation mode, reverse mode

AD can, at first, appear somewhat “mysterious” (Dennis and Schnabel, 1996). Griewank
and Walther (2008) argue that this is in part because of the common acquaintance with the
chain rule as a mechanistic procedure propagating derivatives forward.

An important advantage of the reverse mode is that it is significantly less costly to
evaluate (in terms of operation count) than the forward mode for functions with a large
number of inputs. In the extreme case of f : Rn ! R, only one application of the reverse

mode is su�cient to compute the full gradient rf =
⇣

@y

@x1
, . . . , @y

@x

n

⌘
, compared with the

n passes of the forward mode needed for populating the same. Because machine learning
practice principally involves the gradient of a scalar-valued objective with respect to a large
number of parameters, this establishes the reverse mode, as opposed to the forward mode,
as the mainstay technique in the form of the backpropagation algorithm.

12. Also called adjoint or cotangent linear mode.
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Table 3: Reverse mode AD example, with y = f(x
1

, x
2

) = ln(x
1

)+x
1

x
2

� sin(x
2

) evaluated
at (x

1

, x
2

) = (2, 5). After the forward evaluation of the primals on the left, the
adjoint operations on the right are evaluated in reverse (cf. Figure 1). Note that
both @y

@x1
and @y

@x2
are computed in the same reverse pass, starting from the adjoint

v̄
5

= ȳ = @y

@y

= 1.

Forward Primal Trace

v�1= x1 = 2

v0 = x2 = 5

v1 = ln v�1 = ln 2

v2 = v�1 ⇥ v0 = 2⇥ 5

v3 = sin v0 = sin 5

v4 = v1 + v2 = 0.693 + 10

v5 = v4 � v3 = 10.693 + 0.959

y = v5 = 11.652

Reverse Adjoint (Derivative) Trace
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= v̄5 ⇥ (�1) = �1

v̄4 = v̄5
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= v̄5 ⇥ 1 = 1

v̄5 = ȳ = 1

In general, for a function f : Rn ! Rm, if we denote the operation count to evaluate
the original function by ops(f), the time it takes to calculate the m ⇥ n Jacobian by the
forward mode is n c ops(f), whereas the same computation can be done via reverse mode in
m c ops(f), where c is a constant guaranteed to be c < 6 and typically c ⇠ [2, 3] (Griewank
and Walther, 2008). That is to say, reverse mode AD performs better when m ⌧ n.

Similar to the matrix-free computation of Jacobian–vector products with forward mode
(Eq. 4), reverse mode can be used for computing the transposed Jacobian–vector product
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by initializing the reverse phase with ȳ = r.
The advantages of reverse mode AD, however, come with the cost of increased storage

requirements growing (in the worst case) in proportion to the number of operations in the
evaluated function. It is an active area of research to improve storage requirements in
implementations by using advanced methods such as checkpointing strategies and data-flow
analysis (Dauvergne and Hascoët, 2006; Siskind and Pearlmutter, 2017).

3.3 Origins of AD and Backpropagation

Ideas underlying AD date back to the 1950s (Nolan, 1953; Beda et al., 1959). Forward
mode AD as a general method for evaluating partial derivatives was essentially discovered
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by Wengert (1964). It was followed by a period of relatively low activity, until interest
in the field was revived in the 1980s mostly through the work of Griewank (1989), also
supported by improvements in modern programming languages and the feasibility of an
e�cient reverse mode AD.

Reverse mode AD and backpropagation have an intertwined history. The essence of the
reverse mode, cast in a continuous-time formalism, is the Pontryagin maximum principle
(Rozonoer, 1959; Boltyanskii et al., 1960). This method was understood in the control
theory community (Bryson and Denham, 1962; Bryson and Ho, 1969) and cast in more
formal terms with discrete-time variables topologically sorted in terms of dependency by
Werbos (1974). Prior to Werbos, the work by Linnainmaa (1970, 1976) is often cited
as the first published description of the reverse mode. Speelpenning (1980) subsequently
introduced reverse mode AD as we know it, in the sense that he gave the first implementation
that was actually automatic, accepting a specification of a computational process written in
a general-purpose programming language and automatically performing the reverse mode
transformation.

Incidentally, Hecht-Nielsen (1989) cites the work of Bryson and Ho (1969) and Werbos
(1974) as the two earliest known instances of backpropagation. Within the machine learn-
ing community, the method has been reinvented several times, such as by Parker (1985),
until it was eventually brought to fame by Rumelhart et al. (1986) and the Parallel Dis-
tributed Processing (PDP) group. The PDP group became aware of Parker’s work only
after their own discovery; similarly, Werbos’ work was not appreciated until it was found
by Parker (Hecht-Nielsen, 1989). This tells us an interesting story of two highly intercon-
nected research communities that have somehow also managed to stay detached during this
foundational period.

For a thorough review of the development of AD, we advise readers to refer to Rall
(2006). Interested readers are highly recommended to read Griewank (2012) for an in-
vestigation of the origins of the reverse mode and Schmidhuber (2015) for the same for
backpropagation.

4. AD and Machine Learning

In the following, we examine the main uses of derivatives in machine learning and report
on a selection of works where general-purpose AD, as opposed to just backpropagation,
has been successfully applied in a machine learning context. Areas where AD has seen use
include optimization, neural networks, computer vision, natural language processing, and
probabilistic inference.

4.1 Gradient-Based Optimization

Gradient-based optimization is one of the pillars of machine learning (Bottou et al., 2016).
Given an objective function f : Rn ! R, classical gradient descent has the goal of finding
(local) minima w⇤ = argmin

w

f(w) via updates of the form �w = �⌘rf , where ⌘ > 0
is a step size. Gradient-based methods make use of the fact that f decreases steepest if
one goes in the direction of the negative gradient. The convergence rate of gradient-based
methods is usually improved by adaptive step-size techniques that adjust the step size ⌘ on
every iteration (Duchi et al., 2011; Schaul et al., 2013; Kingma and Ba, 2015).
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Collage of reverse and forward mode of automatic differentiation

Apparently in the style of  Pearlmutter and Siskind ,  see last page for references. 



#MMLSeminar29jan19 filename=annoTraskGF.py 
# rationalized version of Trask1anno.py (from 19oct18)
#last edit 31jan19

## Numpy is the Python library for array operations
import numpy as np 

## To round printouts to 3 decimal places in printout

np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)})

##### re-insert the options

## So outputs(y's) = fcn(inputs (x's) using  weights (w's)
## XOR operates on all 4 possible truth values, no sampling
## final 1's absorb bias 
##aka linearizing affine transformations, projectivive coords, homogenizing

X0 = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])  ## X0(4,3)=4rows of 3vcrs
y0 = np.array([[0,1,1,0]]).T ## XOR, y0(4,1) column vector
np.random.seed(1) ##for repeatable experiments

W1= 2*np.random.random((3,4))-1 ##W1(3,4) signed fractions
w2= 2*np.random.random((4,1))-1 ##w2(4,1) signed fractions

print "initial W1"
print W1
print "initial w2"
print w2

for jj in xrange(600): ## by 600 obvious trend, Trask uses 60,000 
    Y1 = 1/(1+np.exp(-(np.dot(X0,W1)))) #Y1(4,4) = sigma( X0(4,3)W1(3,4) )
    y2 = 1/(1+np.exp(-(np.dot(Y1,w2)))) #y3(4,1) = sigma( Y1(4,4)w2(4,1) )

## Error (aka Loss) fcn E(y2)=.5|y0-y2|^2 so -grad E = y0-y2
## dy2 for Rumelhart's deltas aka "adjoints" for updating the weights by
## backprop aka reverse automatic differentiation
    dy2= (y0-y2)*y2*(1-y2) ## dy2(4,1), Hadamard arithmetic * is termwise
    dY1= dy2.dot(w2.T)*Y1*(1-Y1) ## dY1(4,4) = dy2(4,1)w2.T(1,4) 
## update the weights
    w2 += Y1.T.dot(dy2) ## dw2(4,1) = Y1.T(4,4)dy2(4,1)
    W1 += X0.T.dot(dY1) ## dW1(3,4) = X0.T(3,4)dY1(4,4)
#endfor
print "final W1=" 
print W1
print "final w2="
print w2 
print "outcome Y1="
print Y1
print "outcome y2="  
print y2 

Notational note:
dy2 and dY1 are misleading. These socalled adjoints are not itty bitty displacements, like differentials on a computer. They
are partial differentials of the error fcn 0.5 |y0-y2|^2 with respect to the variable y2 and Y1 respectively. Sorry.



30jan19 filename=recipeInits.txt
White shell = EDIT
Black shell = RUN, adjust !
--------------------------------
Run1: (default with random weights
1.0 adjust BLACK size, shape 
1.1 run to 599
1.2 compare to 598
1.3 un-comment wait-for-keypress
1.4 by 300 obvious separation
--------------------------------
Run2: W1=w2=0  FAILS
2.1 run to 599 
2.2 keypress to check for typos 
NOTE the halves in output
--------------------------------
Run3: W1=0 w2=1   FAILS
3.1 keypress to check for typos
3.2 run to end
--------------------------------
Run4: W1=w2=0 contaminated
in 600 iterations FAILS
but 6000 SUCCESS
3.1 keypress to check for typos
3.2 run to end

Libretto for playing with the initial values of in the weights-space in R^20



#28jan19 Exploring the initial conditions, corr 31,29jan19
import numpy as np ## Python library for array operations
## Round printouts to 3 decimal places
np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)})

X0 = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]]) ## X0(4,3)=4rows of 3vcrs
y0 = np.array([[0,1,1,0]]).T ## XOR, y0(4,1) column vector
np.random.seed(1) ##for repeatable experiments

W1= 2*np.random.random((3,4))-1 ## W1(3,4) signed fractions
w2= 2*np.random.random((4,1))-1 ## w2(4,1) signed fractions

#eps = 0.000000000001 #.0001 ok too
#W1= 1 - eps*np.random.random((3,4)) ##W1(3,4) nhd of 1 
#w2= 1 - eps*np.random.random((4,1)) ##w2(4,1) nhd of 1 

#W1 = np.zeros((3,4)) ## solid 0s
#w2 = np.zeros((4,1)) 

#W1 = np.ones((3,4)) ## solid 1s
#w2 = np.ones((4,1)) 

#W1[2][3]= 1. ## contaminators
#w2[1]=-1.

for jj in xrange(600): ## by 600 obvious trend, Trask uses 60,000 
    Y1 = 1/(1+np.exp(-(np.dot(X0,W1)))) #Y1(4,4)=sigma(X0(4,3)W1(3,4))
    y2 = 1/(1+np.exp(-(np.dot(Y1,w2)))) #y2(4,1)=sigma(Y1(4,4)w2(4,1))

###    raw_input() ##### wait-for-keypress kludge
    print "ITERATION", jj  
    print "Weight1"  
    print W1  
    print "weight2" 
    print w2 
    print "output" 
    print y2 

    dy2= (y0-y2)*y2*(1-y2) ## dy2(4,1) Hadamard product * 
    dY1= dy2.dot(w2.T)*Y1*(1-Y1) ## dY1(4,4) = dy2(4,1)w2.T(1,4)
    w2 += Y1.T.dot(dy2) ## w2(4,1) += Y1.T(4,4)dy2(4,1)
    W1 += X0.T.dot(dY1) ## W1(4,4) += X0.T(3,4)dY1(4,4)
#endfor

filename: playInits.py 

Play with inits by commenting in/out code lines and changing values.
Line ### waits for a [return] key to go to the next iteration. Without it
program will run through all 600 iterations.



http://iamtrask.github.io/2015/07/12/basic-python-network/
;;vocabulary in Trask's Python code decoded somewhat 

X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ]) ;; X(4,3) ~ 4 rows of 3 vcrs
y = np.array([[0,1,1,0]]).T ;; y(1,4).T = y.T(4,1) ~ column 4 vecr

;; synapse ~ weights,  in non-bioenvy jargon 

syn0 = 2*np.random.random((3,4)) - 1 ;; syn0(3,4) of signed fractions
syn1 = 2*np.random.random((4,1)) - 1 ;; syn1(4,1) of signed fractions
for j in xrange(60000):  ;; overkill, but a matter of taste

;; the "lj" is the output of layer j 

l1 = 1/(1+np.exp(-(np.dot(X,syn0)))) ;; l1(4,4)=sigma(X(4,3)syn0(3,4))
l2 = 1/(1+np.exp(-(np.dot(l1,syn1))));; l2(4,1)=sigma(l1(4,4)syn1(4,1)

;;delta ~ allusion to Rumelhart's backprop quantities 
;; Python numpy library syntax uses a  mixture of 
;; matrix and the commutative termwise (Hadamard) product (dot and *)
;; y-l2 ~ gradient of loss fcn = .5|y-l2|^2
;; note that for b=sigma(a), db/da = b*(1-b) 

l2_delta = (y - l2)*(l2*(1-l2)) ;; backpropped to 2nd layer
l1_delta = l2_delta.dot(syn1.T) * (l1 * (1-l1));; backpropped to 2nd layer
syn1 += l1.T.dot(l2_delta) ;; update the second weights
syn0 += X.T.dot(l1_delta)  ;; update the first weights 

;; To make sense of this obviously "working" code I ended up spending
;; way too much time on trying to find more memorable notation, 
;; but can't say I succeeded.  



30jan19 
Treppensagen aka Dits-Escaliers (there is no English equivalent) 
for "Things I should have said". They occur on the way down the 
stairs afterwards.

It seems that the survey paper I referred to as  Baydin++  now has 
a different URL than where I found it. The date is the earliest I 
could find. I have added a (recent) URL prefixed with an *:

Baydin, Pearlmutter, Radul, Siskind (2017) "Automatic differentiation in machine learning" 
*http://jmlr.org/papers/volume18/17-468/17-468.pdf

It is flanked by an as yet unpublished paper by Peralmutter and Siskind,
and the Wikipedia article" 

Pearlmutter and Siskind  "Reverse-mode AD in a functional framework"
*http://www-bcl.cs.may.ie/~barak/papers/toplas-reverse.pdf

Automatic differentiation - Wikipedia (last updated 2019)
*https://en.wikipedia.org/wiki/Automatic_differentiation

So, I think we can attribute to Pearlmutter and Siskind the convergence of 
reverse mode automatic differentiation with back propagation I talked 
about.


